Abstract:
A three dimensional (3D) chip stack includes a first chip bonded to a second chip. The first chip includes a first bump structure overlying the first substrate, and the second chip includes a second bump structure overlying the second substrate. The first bump structure is attached to the second bump structure, and a joining region is formed between the first bump structure and the second bump structure. The joining region is a solderless region which includes a noble metal.
Abstract:
A paste may be used to connect at least one electronic component to at least one substrate through contact regions, wherein at least one of the contact regions contains a non-noble metal. The paste contains (a) metal particles, (b) at least one activator that bears at least two carboxylic acid units in the molecule, and (c) a dispersion medium. A method for connecting at least one electronic component to at least one substrate through the contact regions includes steps of providing a substrate having a first contact region and an electronic component having a second contact region; providing the above paste; generating a structure, wherein the first contact region of the substrate contacts the second contact region of the electronic component through the paste; and sintering the structure while producing a module including at least the substrate and the electronic component connected to each other through the sintered paste.
Abstract:
A first substrate with a penetration electrode formed thereon is stacked on a second substrate with a protruding electrode formed thereon. The penetration electrode has a recessed portion. The substrates are stacked with the protruding electrode entered in the recessed portion. A distal width of the protruding electrode is smaller than an opening width of the recessed portion.
Abstract:
A packaging substrate with conductive structure is provided, including a substrate body having at least one conductive pad on a surface thereof, a stress buffer metal layer disposed on the conductive pad and a thickness of the stress buffer metal layer being 1-20 μm, a solder resist layer disposed on the substrate body and having at least one opening therein for correspondingly exposing a portion of top surface of the stress buffer metal layer, a metal post disposed on a central portion of the surface of the stress buffer metal layer, and a solder bump covering the surfaces of the metal post. Therefore, a highly reliable conductive structure is provided, by using the stress buffer metal layer to release thermal stresses, and using the metal post and the solder bump to increase the height of the conductive structure.
Abstract:
A semiconductor device is provided. The semiconductor device comprises a semiconductor die having bond pads, each of which consists of a first bond pad made of a material whose ionization tendency is relatively low and a second bond pad made of a material whose ionization tendency is relatively high. The second bond pads function as sacrificial anodes to prevent the occurrence of galvanic corrosion at the interfaces between the first bond pads and conductive wires. In an embodiment, the upper surfaces of the second bond pads are marked instead of those of the first bond pads, which reduces the number of defects in the first bond pads. A method for fabricating the semiconductor device is also provided.
Abstract:
Packaged semiconductor components and methods for manufacturing packaged semiconductor components. In one embodiment a semiconductor component comprises a die having a semiconductor substrate and an integrated circuit. The substrate has a first side, a second side, a sidewall between the first and second sides, a first indentation at the sidewall around a periphery of the first side, and a second indentation at the sidewall around a periphery of the second side. The component can further include a first exterior cover at the first side and a second exterior cover at the second side. The first exterior cover has a first extension in the first indentation, and the second exterior cover has a second extension in the second indentation. The first and second extensions are spaced apart from each other by an exposed portion of the sidewall.
Abstract:
A package carrier including a substrate, at least an under bump metallurgic (UBM) layer and at least a conductive bump is provided. The substrate has a conductive structure and at least a pad connected with the conductive structure. A region of the pad connected with the conductive structure is a signal source region. The UBM layer is disposed on the pad and includes a first conductive pattern and a second conductive pattern. A side wall of the second conductive pattern is directly connected to a side wall of the first conductive pattern, and the second conductive pattern is disposed close to the signal source region. The conductivity of the second conductive pattern is smaller than the conductivity of the first conductive pattern. The conductive bump is disposed on the UBM layer.
Abstract:
A semiconductor package substrate having electrical connecting pads includes: a substrate body having a plurality of electrical connecting pads formed on surface thereof, and a plurality of protruding lumps or concave areas of any geometric shape respectively formed on surfaces of the electrical connecting pads for increasing contact surfaces of the electrical connecting pads, thereby preventing detaching of conductive elements from surfaces of the electrical connecting pads caused by poor bonding force.
Abstract:
Packaged semiconductor components and methods for manufacturing packaged semiconductor components. In one embodiment a semiconductor component comprises a die having a semiconductor substrate and an integrated circuit. The substrate has a first side, a second side, a sidewall between the first and second sides, a first indentation at the sidewall around a periphery of the first side, and a second indentation at the sidewall around a periphery of the second side. The component can further include a first exterior cover at the first side and a second exterior cover at the second side. The first exterior cover has a first extension in the first indentation, and the second exterior cover has a second extension in the second indentation. The first and second extensions are spaced apart from each other by an exposed portion of the sidewall.
Abstract:
A semiconductor package includes a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern, The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region.