Abstract:
A semiconductor device is presented. The semiconductor device comprises a semiconductor body coupled to a first load terminal and to a second load terminal and configured to carry a load current between the first load terminal and the second load terminal. The first load terminal comprises a contiguous metal layer coupled to the semiconductor body; and at least one metal island arranged on top of and in contact with the contiguous metal layer and configured to be contacted by an end of a bond wire and to receive at least a part of the load current by means of the bond wire, wherein the contiguous metal layer and the metal island are composed of the same metal.
Abstract:
A light-emitting diode having a multilayer bonding pad includes: a P1 layer disposed under a light-emitting structure and configured to improve ohmic contact and adhesion; a P3 layer disposed under the P1 layer and configured to prevent diffusion; a Sn-based metal layer disposed under the P1 layer and configured to enhance soldering weldability and prevent oxidation; a Cu-based P5 layer disposed on the Sn-based metal layer and configured to prevent the diffusion of Sn; and a P4 layer disposed between the P3 layer and the P5 layer and configured to suppress the reaction between the P5 layer and other layers.
Abstract:
Silicide films with high quality are formed with treatment of laser light irradiation, so that miniaturization and higher performance is achieved in a field-effect transistor that is formed over an insulating substrate and has little variation in electric characteristics. An island-shaped semiconductor film including a pair of impurity regions and a channel formation region is formed over an insulating substrate, a first metal film is formed on the pair of impurity regions, and a second metal film that functions as a reflective film is formed over a gate electrode located over the channel formation region with a gate insulating film interposed therebetween. The first metal film is irradiated with laser light and a region where the second metal film is formed reflects the laser light, so that the island-shaped semiconductor film and the first metal film selectively react with each other in the pair of impurity regions.
Abstract:
A semiconductor package includes a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern, The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region.
Abstract:
A semiconductor chip comprises a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern. The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region. The bond pad-wiring pattern is formed substantially in a center region of the semiconductor substrate. Thus, with the embodiments of the present invention, the overall chip size can thereby be substantially reduced and an MCP can be fabricated without the problems mentioned above.
Abstract:
A method for producing bumps on an IC package substrate. The method first deposits a medium layer on a protective layer of the IC package substrate, which has good adherence ability to both the copper layer and the protective layer. Then, a CVD process is applied to deposit a copper layer on the medium layer to form the metal layer. A dry film is thereafter formed on the metal layer and several contact windows are opened therein. A metal pad and a bump are electroplated in the contact windows. Then the dry film is removed, the bumps are protruded out of the substrate with a predetermined height to be solder bumps with an IC chip. Thus, an IC chip no longer needs to form bumps thereon anymore and to save cost and reduce pitch between bumps down to 150 um. Therefore, the improved BGA substrate may be applied on to smaller IC package device to meet the trend for minimizing package sizes.
Abstract:
A method for manufacturing an electronic device, including a step of aligning and stacking a plurality of substrates, each of the plurality of substrates having a plurality of vertical conductors and magnetic films, the vertical conductors being directed along a thickness direction of the substrate and distributed in a row with respect to a substrate surface, the magnetic films being disposed in place on the substrate surface in a predetermined positional relationship with the vertical conductors, upon aligning the plurality of substrates, the electronic device manufacturing method including a step of applying an external magnetic field to produce a magnetic attractive force between the magnetic films of adjacent stacked substrates and align the vertical conductors by the magnetic attractive force.
Abstract:
In various embodiments, a layer stack is provided. The layer stack may include a carrier; a first metal disposed over the carrier; a second metal disposed over the first metal; and a solder material disposed above the second metal or a material that provides contact to a solder that is supplied by an external source. The second metal may have a melting temperature of at least 1800° C. and is not or substantially not dissolved in the solder material at least one of during a soldering process and after the soldering process.
Abstract:
Silicide films with high quality are formed with treatment of laser light irradiation, so that miniaturization and higher performance is achieved in a field-effect transistor that is formed over an insulating substrate and has little variation in electric characteristics. An island-shaped semiconductor film including a pair of impurity regions and a channel formation region is formed over an insulating substrate, a first metal film is formed on the pair of impurity regions, and a second metal film that functions as a reflective film is formed over a gate electrode located over the channel formation region with a gate insulating film interposed therebetween. The first metal film is irradiated with laser light and a region where the second metal film is formed reflects the laser light, so that the island-shaped semiconductor film and the first metal film selectively react with each other in the pair of impurity regions.
Abstract:
In a conventional UBM made of, for example, Cu, Ni, or NiP, there has been a problem that when an electronic component is held in high-temperature conditions for an extended period, the barrier characteristic of the UBM is lost and the bonding strength decreases due to formation of a brittle alloy layer at a bonding interface. The present invention improves the problem of decrease in long-term connection reliability of a solder connection portion after storage at high temperatures. An electronic component comprises the electronic component includes an electrode pad formed on a substrate or a semiconductor element and a barrier metal layer formed to cover the electrode pad and the barrier metal layer comprises a CuNi alloy layer on the side opposite the side in contact with the electrode pad, the CuNi alloy layer containing 15 to 60 at % of Cu and 40 to 85 at % of Ni.