Abstract:
A semiconductor device includes an active fin protruding from a substrate, extending in a first direction, and defined by a device isolation layer. Gate structures intersect the active fin and extend in a second direction. Each of the gate structures includes a gate and gate spacers on side surfaces of the gate. Epitaxial layers are disposed on the active fin, on opposite sides of the gate structure, and include a first epitaxial layer providing a drain region and a second epitaxial layer providing a source region. The gate spacers include a first spacer disposed between the first epitaxial layer and the gate. The first spacer includes a first region extending in a third direction, along a side surface of the gate, and a second region extending from a lower portion of the first region in a direction away from the gate.
Abstract:
A field effect transistor and a semiconductor device including the same are provided. The semiconductor device may include a channel layer, which is provided on a substrate and includes a two-dimensional atomic layer made of a first material, and a source/drain layer, which is provided on the substrate and includes a second material. The first material may be one of phosphorus allotropes, the second material may be one of carbon allotropes, and the channel layer and the source/drain layer may be connected to each other by covalent bonds between the first and second materials.
Abstract:
A semiconductor device includes a gate on a substrate, a gate insulating layer along a sidewall and a bottom surface of the gate, and an L-shaped spacer structure on both sidewalls of the gate. A structure extends the distance between the gate and source/drain regions to either side of the gate.
Abstract:
Semiconductor devices may include a plurality of active fins each extending in a first direction on a substrate, a gate structure extending on the active fins in a second direction, and a first source/drain layer on first active fins of the active fins adjacent the gate structure. At least one of two opposing sidewalls of a cross-section of the first source/drain layer taken along the second direction may include a curved portion having a slope with respect to an upper surface of the substrate. The slope may decrease from a bottom toward a top thereof.
Abstract:
Methods of forming a semiconductor device are provided. A method of forming a semiconductor device includes forming a semiconductor layer on a fin, where the fin and the semiconductor layer include first and second semiconductor materials, respectively. Moreover, the method includes defining first and second active fins that include the second semiconductor material, by removing at least a portion of the fin. Related semiconductor devices are also provided.
Abstract:
A semiconductor device includes an active pattern provided on a substrate and a gate electrode crossing over the active pattern. The active pattern includes a first buffer pattern on the substrate, a channel pattern on the first buffer pattern, a doped pattern between the first buffer pattern and the channel pattern, and a second buffer pattern between the doped pattern and the channel pattern. The doped pattern includes graphene injected with an impurity.
Abstract:
A semiconductor device includes a substrate including at least one metal-oxide-semiconductor field-effect transistor (MOSFET) region defined by a device isolation layer and having an active pattern extending in a first direction on the MOSFET region, a gate electrode intersecting the active pattern on the substrate and extending in a second direction intersecting the first direction, and a first gate separation pattern adjacent to the MOSFET region when viewed from a plan view and dividing the gate electrode into segments spaced apart from each other in the second direction. The first gate separation pattern has a tensile strain when the MOSFET region is a P-channel. MOSFET (PMOSFET) region. The first gate separation pattern has a compressive strain when the MOSFET region is an N-channel MOSFET (NMOSFET) region.
Abstract:
In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
Abstract:
A variable resistance memory device includes a gate pattern and a dummy gate pattern provided at the same level on a substrate, a first contact pattern provided on the dummy gate pattern, and a variable resistance pattern provided between the dummy gate pattern and the first contact pattern. The gate pattern and the dummy gate pattern define conductive electrodes of functional and non-functional transistors, respectively. The first contact pattern and the dummy gate pattern define upper and lower electrodes on the variable resistance pattern, respectively. Related fabrication methods are also discussed.
Abstract:
A MOSFET may be formed with a strain-inducing mismatch of lattice constants that improves carrier mobility. In exemplary embodiments a MOSFET includes a strain-inducing lattice constant mismatch that is not undermined by a recessing step. In some embodiments a source/drain pattern is grown without a recessing step, thereby avoiding problems associated with a recessing step. Alternatively, a recessing process may be performed in a way that does not expose top surfaces of a strain-relaxed buffer layer. A MOSFET device layer, such as a strain-relaxed buffer layer or a device isolation layer, is unaffected by a recessing step and, as a result, strain may be applied to a channel region without jeopardizing subsequent formation steps.