Abstract:
Semiconductor devices are provided. A semiconductor device includes a fin structure having a plurality of first semiconductor patterns and a plurality of second semiconductor patterns alternately stacked on a substrate, and extending in a first direction. The semiconductor device includes a semiconductor cap layer on an upper surface of the fin structure, and extending along opposite side surfaces of the fin structure in a second direction crossing the first direction. The semiconductor device includes a gate electrode on the semiconductor cap layer, and extending in the second direction. The semiconductor device includes a gate insulating film between the semiconductor cap layer and the gate electrode. Moreover, the semiconductor device includes a source/drain region connected to the fin structure. The plurality of first semiconductor patterns include silicon germanium (SiGe) having a germanium (Ge) content in a range of 25% to 35%, and the plurality of second semiconductor patterns include silicon (Si).
Abstract:
A semiconductor device includes an active pattern provided on a substrate and a gate electrode crossing over the active pattern. The active pattern includes a first buffer pattern on the substrate, a channel pattern on the first buffer pattern, a doped pattern between the first buffer pattern and the channel pattern, and a second buffer pattern between the doped pattern and the channel pattern. The doped pattern includes graphene injected with an impurity.
Abstract:
A method for forming a pattern of a semiconductor device and a semiconductor device formed using the same are provided. The method includes forming a buffer layer on a substrate, forming a channel layer on the buffer layer, forming support patterns penetrating the channel layer, and forming channel fin patterns and a buffer pattern by patterning the channel layer and the buffer layer. The channel layer includes a material of which a lattice constant is different from that of the buffer layer, and each of the channel fin patterns has both sidewalls that are in contact with the support patterns and are opposite to each other.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a fin structure having a plurality of first semiconductor patterns and a plurality of second semiconductor patterns alternately stacked on a substrate, and extending in a first direction. The semiconductor device includes a semiconductor cap layer on an upper surface of the fin structure, and extending along opposite side surfaces of the fin structure in a second direction crossing the first direction. The semiconductor device includes a gate electrode on the semiconductor cap layer, and extending in the second direction. The semiconductor device includes a gate insulating film between the semiconductor cap layer and the gate electrode. Moreover, the semiconductor device includes a source/drain region connected to the fin structure. The plurality of first semiconductor patterns include silicon germanium (SiGe) having a germanium (Ge) content in a range of 25% to 35%, and the plurality of second semiconductor patterns include silicon (Si).
Abstract:
A semiconductor device includes an active pattern provided on a substrate and a gate electrode crossing over the active pattern. The active pattern includes a first buffer pattern on the substrate, a channel pattern on the first buffer pattern, a doped pattern between the first buffer pattern and the channel pattern, and a second buffer pattern between the doped pattern and the channel pattern. The doped pattern includes graphene injected with an impurity.
Abstract:
A semiconductor device includes an active pattern provided on a substrate and a gate electrode crossing over the active pattern. The active pattern includes a first buffer pattern on the substrate, a channel pattern on the first buffer pattern, a doped pattern between the first buffer pattern and the channel pattern, and a second buffer pattern between the doped pattern and the channel pattern. The doped pattern includes graphene injected with an impurity.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a fin structure having a plurality of first semiconductor patterns and a plurality of second semiconductor patterns alternately stacked on a substrate, and extending in a first direction. The semiconductor device includes a semiconductor cap layer on an upper surface of the fin structure, and extending along opposite side surfaces of the fin structure in a second direction crossing the first direction. The semiconductor device includes a gate electrode on the semiconductor cap layer, and extending in the second direction. The semiconductor device includes a gate insulating film between the semiconductor cap layer and the gate electrode. Moreover, the semiconductor device includes a source/drain region connected to the fin structure. The plurality of first semiconductor patterns include silicon germanium (SiGe) having a germanium (Ge) content in a range of 25% to 35%, and the plurality of second semiconductor patterns include silicon (Si).
Abstract:
Semiconductor devices are provided. A semiconductor device includes a fin structure having a plurality of first semiconductor patterns and a plurality of second semiconductor patterns alternately stacked on a substrate, and extending in a first direction. The semiconductor device includes a semiconductor cap layer on an upper surface of the fin structure, and extending along opposite side surfaces of the fin structure in a second direction crossing the first direction. The semiconductor device includes a gate electrode on the semiconductor cap layer, and extending in the second direction. The semiconductor device includes a gate insulating film between the semiconductor cap layer and the gate electrode. Moreover, the semiconductor device includes a source/drain region connected to the fin structure. The plurality of first semiconductor patterns include silicon germanium (SiGe) having a germanium (Ge) content in a range of 25% to 35%, and the plurality of second semiconductor patterns include silicon (Si).