Abstract:
A power semiconductor package that includes a semiconductor die having at least two power electrodes and a conductive clip electrically and mechanically coupled to each power electrode.
Abstract:
Hermetically sealed semiconductor wafer packages that include a first bond ring on a first wafer facing a complementary surface of a second bond ring on a second wafer. The package includes first and second standoffs of a first material, having a first thickness, formed on a surface of the first bond ring. The package also includes a eutectic alloy (does not have to be eutectic, typically it will be an alloy not specific to the eutectic ratio of the elements) formed from a second material and the first material to create a hermetic seal between the first and second wafer, the eutectic alloy formed by heating the first and second wafers to a temperature above a reflow temperature of the second material and below a reflow temperature of the first material, wherein the eutectic alloy fills a volume between the first and second standoffs and the first and second bond rings, and wherein the standoffs maintain a prespecified distance between the first bond ring and the second bond ring.
Abstract:
A method for wafer to wafer bonding in semiconductor packaging provides for roughening the bonding surfaces in one embodiment. Also provided is a method for passivating the bonding surfaces with a lower melting point material that becomes forced away from the bonding interface during bonding. Also provided is a method for forming an eutectic at the bonding interface to reduce the impact of any native oxide formation at the bonding interface.
Abstract:
A driving backplane, a transfer method for a light-emitting diode chip (21), and a display apparatus. The driving backplane comprises: a base substrate (10), a driving circuit, a plurality of electromagnetic structures (13), and a plurality of contact electrodes (12). The plurality of electromagnetic structures (13) in the driving backplane are symmetrically arranged relative to a first straight line (L1) and a second straight line (L2). A current signal can be applied to each electromagnetic structure (13) by means of the driving circuit. Stress generated by a transfer carrier plate (20) according to the magnetic force of each electromagnetic structure (13) moves the transfer carrier plate (20). When the transfer carrier plate (20) is stress balanced in each direction parallel to the surface of the transfer carrier plate (20), the light-emitting diode chip (21) is precisely aligned to corresponding contact electrodes (12).
Abstract:
A circuit carrier. The circuit carrier has at least one electronic component, the electronic component being soldered to the circuit carrier, in particular with the aid of a flux. The circuit carrier has, in particular, an electrically insulating protective layer for anti-condensation, a surface of the circuit carrier being covered at least partially with the protective layer. The protective layer of the circuit carrier is formed by a silicon polymer layer designed to be activatable with the aid of ultraviolet radiation, the silicon polymer layer having filler particles distributed in the silicon polymer layer, in particular homogenously. At least a part of the filler particles or all filler particles have at least one salt of an alkaline earth metal.
Abstract:
Hermetically sealed semiconductor wafer packages that include a first bond ring on a first wafer facing a complementary surface of a second bond ring on a second wafer. The package includes first and second standoffs of a first material, having a first thickness, formed on a surface of the first bond ring. The package also includes a eutectic alloy (does not have to be eutectic, typically it will be an alloy not specific to the eutectic ratio of the elements) formed from a second material and the first material to create a hermetic seal between the first and second wafer, the eutectic alloy formed by heating the first and second wafers to a temperature above a reflow temperature of the second material and below a reflow temperature of the first material, wherein the eutectic alloy fills a volume between the first and second standoffs and the first and second bond rings, and wherein the standoffs maintain a prespecified distance between the first bond ring and the second bond ring.
Abstract:
A power semiconductor package that includes a semiconductor die having at least two power electrodes and a conductive clip electrically and mechanically coupled to each power electrode.
Abstract:
This disclosure is related to integrating optoelectronics microdevices into a system substrate for efficient and durable electrical bonding between two substrates at low temperature. 2D nanostructures and 3D scaffolds may create interlocking structures for improved bonding properties. Addition of nanoparticles into the structure creates high surface area for better conduction. Application of curing agents before or after alignment of micro devices and receiving substrates further assists with formation of strong bonds.
Abstract:
A circuit carrier. The circuit carrier has at least one electronic component, the electronic component being soldered to the circuit carrier, in particular with the aid of a flux. The circuit carrier has, in particular, an electrically insulating protective layer for anti-condensation, a surface of the circuit carrier being covered at least partially with the protective layer. The protective layer of the circuit carrier is formed by a silicon polymer layer designed to be activatable with the aid of ultraviolet radiation, the silicon polymer layer having filler particles distributed in the silicon polymer layer, in particular homogenously. At least a part of the filler particles or all filler particles have at least one salt of an alkaline earth metal.
Abstract:
In accordance with an embodiment of the present invention, a semiconductor package includes a semiconductor chip and a bump. The semiconductor chip has a contact pad on a major surface. The bump is disposed on the contact pad of the semiconductor chip. A solder layer is disposed on sidewalls of the bump.