摘要:
Methods for forming a dual gate structure for a vertical TFT are described. The dual gate structure may be formed by performing a first etching process that includes forming a first set of trenches by etching a first set of oxide pillars to a first depth and forming a second set of trenches by etching a second set of oxide pillars to a second depth higher than the first depth, forming a first set of gate structures within the first set of trenches, forming a second set of gate structures within the second set of trenches, performing a second etching process that includes forming a third set of trenches by etching the first set of gate structures from a second initial depth to a third depth and forming a fourth set of trenches by etching the second set of gate structures to a fourth depth higher than the third depth.
摘要:
In some embodiments, a memory array is provided that includes (1) a first memory cell having (a) a first conductive line; (b) a first bipolar storage element formed above the first conductive line; and (c) a second conductive line formed above the first bipolar storage element; and (2) a second memory cell formed above the first memory cell and having (a) a second bipolar storage element formed above the second conductive line; and (b) a third conductive line formed above the second bipolar storage element. The first and second memory cells share the second conductive line; the first bipolar storage element has a first storage element polarity orientation within the first memory cell; the second bipolar storage element has a second storage element polarity orientation within the second memory cell; and the second storage element polarity orientation is opposite the first storage element polarity orientation. Numerous other aspects are provided.
摘要:
In some embodiments, a memory cell is provided that includes a metal-insulator-metal stack and a steering element coupled to the metal-insulator-metal stack. The metal-insulator-metal stack includes a first conductive layer, a reversible resistivity switching layer above the first conductive layer, and a second conductive layer above the reversible resistivity switching layer. The first conductive layer and/or the second conductive layer includes a first semiconductor material layer. The steering element includes the first semiconductor material layer. Numerous other aspects are provided.
摘要:
A method is provided that includes forming completely distinct first features above a substrate, forming sidewall spacers on the first features, filling spaces between adjacent sidewall spacers with filler features, and removing the sidewall spacers. Numerous other aspects are provided.
摘要:
In some embodiments, a memory cell is provided that includes a metal-insulator-metal stack and a steering element coupled to the metal-insulator-metal stack. The metal-insulator-metal stack includes a first conductive layer, a reversible resistivity switching layer above the first conductive layer, and a second conductive layer above the reversible resistivity switching layer. The first conductive layer and/or the second conductive layer includes a first semiconductor material layer. The steering element includes the first semiconductor material layer. Numerous other aspects are provided.
摘要:
A 3D array of nonvolatile memory has each read/write element accessed at a crossing between a word line and a bit line. The read/write element forms a tubular electrode having an outside shell of R/W material enclosing an oxide core. In a rectangular form, one side of the electrode contacts the word line and another side contacts the bit line. The thickness of the shell rather than its surface areas in contact with the word line and bit line determines the conduction cross-section and therefore the resistance. By adjusting the thickness of the shell, independent of its contact area with either the word line or bit line, each read/write element can operate with a much increased resistance and therefore much reduced current. Processes to manufacture a 3D array with such tubular R/W elements 3D array are also described.
摘要:
A three-dimensional nonvolatile memory array includes a select layer that selectively connects vertical bit lines to horizontal bit lines. Individual select switches of the select layer include two separately controllable transistors that are connected in series between a horizontal bit line and a vertical bit line. Each transistor in a select switch is connected to a different control circuit by a different select line.
摘要:
A memory cell is provided that includes a steering element, a metal-insulator-metal stack coupled in series with the steering element, and a conductor above the metal-insulator-metal stack. The steering element includes a diode having an n-region and a p-region. The metal-insulator-metal stack includes a reversible resistivity-switching material between a top electrode and a bottom electrode, and the top electrode includes a highly doped semiconductor material. The memory cell does not include a metal layer disposed between the metal-insulator-metal stack and the conductor. The bottom electrode includes the n-region or the p-region of the diode, and the reversible resistivity-switching material is directly adjacent the n-region or the p-region of the diode. Numerous other aspects are provided.
摘要:
A method is provided that includes forming completely distinct first features above a substrate, forming sidewall spacers on the first features, filling spaces between adjacent sidewall spacers with filler features, and removing the sidewall spacers. Numerous other aspects are provided.
摘要:
A multiple junction thin film transistor (TFT) is disclosed. The body of the TFT may have an n+ layer residing in a p− region of the body. The TFT may have an n+ source and an n+ drain on either side of the p− region of the body. Thus, the TFT has an n+/p−/n+/p−/n+ structure in this example. The n+ layer in the p− region increases the breakdown voltage. Also, drive current is increased. The impurity concentration in the n+ layer in the p− body and/or thickness of the n+ layer in the p− body may be tuned to increase performance of the TFT. In an alternative, the body of the TFT has a p+ layer residing in an n− region of the body. The TFT may have a p+ source and a p+ drain on either side of the p− region of the body.