Abstract:
In some embodiments, a memory cell is provided that includes a metal-insulator-metal stack and a steering element coupled to the metal-insulator-metal stack. The metal-insulator-metal stack includes a first conductive layer, a reversible resistivity switching layer above the first conductive layer, and a second conductive layer above the reversible resistivity switching layer. The first conductive layer and/or the second conductive layer includes a first semiconductor material layer. The steering element includes the first semiconductor material layer. Numerous other aspects are provided.
Abstract:
In some embodiments, a memory cell is provided that includes a metal-insulator-metal stack and a steering element coupled to the metal-insulator-metal stack. The metal-insulator-metal stack includes a first conductive layer, a reversible resistivity switching layer above the first conductive layer, and a second conductive layer above the reversible resistivity switching layer. The first conductive layer and/or the second conductive layer includes a first semiconductor material layer. The steering element includes the first semiconductor material layer. Numerous other aspects are provided.
Abstract:
A three-dimensional array of memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. The memory elements can be set to a low resistance state and reset to a high resistance state during standard operation by biasing appropriate voltages on the word lines and bit lines. Prior to standard operation, the memory elements undergo a forming operation, during which current through the bit lines is limited. A forming voltage is applied to the memory elements during forming with a polarity such that a higher voltage is applied to anodes and a lower voltage to cathodes.
Abstract:
A three-dimensional array of memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. The memory elements can be set to a low resistance state and reset to a high resistance state during standard operation by biasing appropriate voltages on the word lines and bit lines. Prior to standard operation, the memory elements undergo a forming operation, during which current through the bit lines is limited. A forming voltage is applied to the memory elements during forming with a polarity such that a higher voltage is applied to anodes and a lower voltage to cathodes.
Abstract:
A memory cell is provided that includes a steering element, a metal-insulator-metal stack coupled in series with the steering element, and a conductor above the metal-insulator-metal stack. The steering element includes a diode having an n-region and a p-region. The metal-insulator-metal stack includes a reversible resistivity-switching material between a top electrode and a bottom electrode, and the top electrode includes a highly doped semiconductor material. The memory cell does not include a metal layer disposed between the metal-insulator-metal stack and the conductor. The bottom electrode includes the n-region or the p-region of the diode, and the reversible resistivity-switching material is directly adjacent the n-region or the p-region of the diode. Numerous other aspects are provided.
Abstract:
A three-dimensional array of memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are provided across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes. The memory elements can be set to a low resistance state and reset to a high resistance state during standard operation by biasing appropriate voltages on the word lines and bit lines. Prior to standard operation, the memory elements undergo a forming operation, during which current through the bit lines is limited. A forming voltage is applied to the memory elements during forming with a polarity such that the bit line acts as a cathode and the word line acts as an anode, with the cathode having a lower electron injection energy barrier to the switching material than the anode.
Abstract:
A three-dimensional array of memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. The memory elements can be set to a low resistance state and reset to a high resistance state during standard operation by biasing appropriate voltages on the word lines and bit lines. Prior to standard operation, the memory elements undergo a forming operation, during which current through the bit lines is limited. A forming voltage is applied to the memory elements during forming with a polarity such that a higher voltage is applied to anodes and a lower voltage to cathodes.
Abstract:
A memory cell is provided that includes a steering element, a metal-insulator-metal stack coupled in series with the steering element, and a conductor above the metal-insulator-metal stack. The steering element includes a diode having an n-region and a p-region. The metal-insulator-metal stack includes a reversible resistivity-switching material between a top electrode and a bottom electrode, and the top electrode includes a highly doped semiconductor material. The memory cell does not include a metal layer disposed between the metal-insulator-metal stack and the conductor. The bottom electrode includes the n-region or the p-region of the diode, and the reversible resistivity-switching material is directly adjacent the n-region or the p-region of the diode. Numerous other aspects are provided.