Abstract:
[Problem] Provided is a technique for bonding chips efficiently onto a wafer to establish an electrical connection and raise mechanical strength between the chips and the wafer or between the chips that are chips laminated onto each other in the state that resin and other undesired residues do not remain on a bond interface therebetween.[Solution] A method for bonding plural chips each having a chip-side-bond-surface having metal regions to a substrate having plural bond portions has the step (S1) of subjecting the metal regions of the chip-side-bond-surface to surface activating treatment and hydrophilizing treatment; the step (S2) of subjecting the bond portions of the substrate to surface activating treatment and hydrophilizing treatment; the step (S3) of fitting the chips subjected to the surface activating treatment and the hydrophilizing treatment onto the corresponding bond portions of the substrate subjected to the surface activating treatment and the hydrophilizing treatment to bring the metal regions of the chips into contact with the bond portions of the substrate; and the step (S4) of heating the resultant structure, which includes the substrate, and the chips fitted onto the substrate.
Abstract:
A conductive structure for a semiconductor chip and a method for forming the conductive structure are provided. The semiconductor chip comprises a semiconductor substrate, a pad, a passivation layer and a patterned insulating layer. The patterned insulating layer is disposed on the passivation layer and partially and directly covers the first opening of the pad to expose a second opening. The conductive structure comprises an under bump metal (UBM) layer and a conductive bump. The UBM layer is disposed in the second opening defined by the patterned insulating layer and is electrically connected to the pad. The conductive bump is disposed on the UBM layer and is electrically connected to the UBM layer. The upper surface of the conductive bump is greater than the upper surface of the patterned insulating layer, while the portion of the conductive bump disposed in the second opening is covered by the UBM layer.
Abstract:
According to this disclosure, a method of manufacturing an electronic device is provided, which includes exposing a top surface of a first electrode of a first electronic component to organic acid, irradiating the top surface of the first electrode exposed to the organic acid with ultraviolet light, and bonding the first electrode and a second electrode of a second electronic component by heating and pressing the first electrode and the second electrode each other.
Abstract:
Disclosed are embodiments of an improved semiconductor wafer structure having protected clusters of carbon nanotubes (CNTs) on the back surface and a method of forming the improved semiconductor wafer structure. Also disclosed are embodiments of a semiconductor module with exposed CNTs on the back surface for providing enhanced thermal dissipation in conjunction with a heat sink and a method of forming the semiconductor module using the disclosed semiconductor wafer structure.
Abstract:
A structure and method of forming pillar bumps with controllable shape and size are provided, which use polishing planarization technology to eliminate shape difference among pillar bumps on a wafer and die, thus yield the pillar bumps with design shape and size.
Abstract:
A process of forming a semiconductor integrated circuit that includes the steps of: forming at least a first element having a first pattern of conductive material and including a polymer layer surrounding the conductive material, forming at least a second element having a second pattern of conductive material and including a polymer layer surrounding the conductive material, positioning the first element relative to the second element, and bonding the polymer layer of the first and second elements at a temperature below a melting temperature of the conductive materials of the first and second elements wherein the conductive material of the first element contacts the conductive material of the second element and is maintained in position by the bonded polymer layers.