Abstract:
A semiconductor device has a temporary carrier. A semiconductor die is oriented with an active surface toward, and mounted to, the temporary carrier. An encapsulant is deposited with a first surface over the temporary carrier and a second surface, opposite the first surface, is deposited over a backside of the semiconductor die. The temporary carrier is removed. A portion of the encapsulant in a periphery of the semiconductor die is removed to form an opening in the first surface of the encapsulant. An interconnect structure is formed over the active surface of the semiconductor die and extends into the opening in the encapsulant layer. A via is formed and extends from the second surface of the encapsulant to the opening. A first bump is formed in the via and electrically connects to the interconnect structure.
Abstract:
Embodiments of the present disclosure include semiconductor packages and methods of forming the same. An embodiment is a semiconductor package including a first package including one or more dies, and a redistribution layer coupled to the one or more dies at a first side of the first package with a first set of bonding joints. The redistribution layer including more than one metal layer disposed in more than one passivation layer, the first set of bonding joints being directly coupled to at least one of the one or more metal layers, and a first set of connectors coupled to a second side of the redistribution layer, the second side being opposite the first side.
Abstract:
An electronic device may include leads, an IC having first and second bond pads, and an encapsulation material adjacent the leads and the IC so the leads extend to a bottom surface of the encapsulation material defining first contact pads. The electronic device may include bond wires between the first bond pads and corresponding ones of the leads, and conductors extending from corresponding ones of the second bond pads to the bottom surface of the encapsulation material defining second contact pads.
Abstract:
A semiconductor device has an encapsulant deposited over a first surface of the semiconductor die and around the semiconductor die. A first insulating layer is formed over a second surface of the semiconductor die opposite the first surface. A conductive layer is formed over the first insulating layer. An interconnect structure is formed through the encapsulant outside a footprint of the semiconductor die and electrically connected to the conductive layer. The first insulating layer includes an optically transparent or translucent material. The semiconductor die includes a sensor configured to receive an external stimulus passing through the first insulating layer. A second insulating layer is formed over the first surface of the semiconductor die. A conductive via is formed through the first insulating layer outside a footprint of the semiconductor die. A plurality of stacked semiconductor devices is electrically connected through the interconnect structure.
Abstract:
Embodiments of the present disclosure include semiconductor packages and methods of forming the same. An embodiment is a semiconductor package including a first package including one or more dies, and a redistribution layer coupled to the one or more dies at a first side of the first package with a first set of bonding joints. The redistribution layer including more than one metal layer disposed in more than one passivation layer, the first set of bonding joints being directly coupled to at least one of the one or more metal layers, and a first set of connectors coupled to a second side of the redistribution layer, the second side being opposite the first side.
Abstract:
A method for manufacturing a chip package structure includes following steps. A carrier having a metal layer is provided. A patterned photoresist layer is formed on the metal layer. The patterned photoresist layer has a plurality of first openings exposing a portion of the metal layer. Connection terminals are formed in the first openings, respectively, and the connection terminals are connected to the metal layer. A chip is placed on the carrier, and first pads of the chip are respectively connected to the connection terminals through a plurality of connection conductors. After the chip is placed on the carrier, the patterned photoresist layer is removed. A encapsulant is formed on the carrier. The encapsulant encapsulates the chip, the connection conductors, and the metal layer. The carrier and the metal layer are removed to expose the connection terminals.
Abstract:
A method for manufacturing a chip package structure includes following steps. A carrier having a metal layer is provided. A patterned photoresist layer is formed on the metal layer. The patterned photoresist layer has a plurality of first openings exposing a portion of the metal layer. Connection terminals are formed in the first openings, respectively, and the connection terminals are connected to the metal layer. A chip is placed on the carrier, and first pads of the chip are respectively connected to the connection terminals through a plurality of connection conductors. After the chip is placed on the carrier, the patterned photoresist layer is removed. A encapsulant is formed on the carrier. The encapsulant encapsulates the chip, the connection conductors, and the metal layer. The carrier and the metal layer are removed to expose the connection terminals.
Abstract:
A transfer substrate for transferring a metal wiring material to a transfer target including a substrate, at least one metal wiring material formed on the substrate, at least one coating layer formed on a surface of the metal wiring material, and an underlying metal film formed between the substrate and the metal wiring material, in which the metal wiring material is a compact formed by sintering metal powder such as gold powder having a purity of 99.9 wt % or more and an average particle size of 0.01 μm to 1.0 μm, and the coating layer is a predetermined metal such as gold or an alloy having a different composition from that of the metal wiring material and has a total thickness of 1 μm or less, and the metal underlying film is made of a predetermined metal such as gold or an alloy. The transfer substrate can lower heating temperature on the transfer target side.
Abstract:
A semiconductor device comprises: a semiconductor structure formed with openings for exposing pads on an one surface thereof, a first conductive layer formed in the openings to make the one surface of the semiconductor structure more uniform, and conductive patterns formed on portions of the one surface of the semiconductor structure including the first conductive layers.
Abstract:
A method for manufacturing an electronic interconnect device is described, the method comprising: providing an electronic members each having one or more electrical contacts on a first member side thereof; providing a carrier having a carrier base and having sets of one or more electrically conductive projections on a surface of the carrier base; attaching the electronic members with the corresponding contacts thereof to the respective set of projections to thereby electrically connect the one or more electrical contacts of the respective chip with the corresponding one or more electrically conductive projections of the respective set; encapsulating exposed portions of the electronic member with an encapsulating material to form an encapsulation.