Abstract:
A re-writable memory with multiple memory layers. Using both terminals of a memory cell in a stacked cross point structure for selection purposes allows multiple layers of conductive lines to be selected as long as there is only one memory cell that has two terminals selected. Sharing logic over multiple layers allows driver sets to be reused.
Abstract:
Method and device for reading data from a semiconductor device, where tR is a read operation time, tT is a buffer transfer time, and tH is a host transfer time, where at least two of tR, tT, and tH may be overlapped to reduce a total transfer time.
Abstract:
An object of the present invention is to provide a compound storage circuit that includes a storage circuit including a volatile storage circuit and a nonvolatile storage circuit connected in parallel to each other and that is arranged to be capable of an instant-on function by storing information equal to storage information stored in the volatile storage circuit into the nonvolatile storage circuit, the compound storage circuit being capable of reducing power consumption, and a semiconductor device including the compound storage circuit. According to the present invention, in a compound storage circuit including a volatile storage circuit and a nonvolatile storage circuit connected in parallel to each other and a semiconductor device including the compound storage circuit, a determination circuit for comparing first storage information stored in the volatile storage circuit with second storage information that has already been stored in the nonvolatile storage circuit when storage information stored in the volatile storage circuit is written into the nonvolatile storage circuit is provided, and the first storage information is written into the nonvolatile storage circuit only when the first storage information is not equal to the second storage information.
Abstract:
A microelectronic programmable structure and methods of forming and programming the structure are disclosed. The programmable structure generally include an ion conductor and a plurality of electrodes. Electrical properties of the structure may be altered by applying a bias across the electrodes, and thus information may be stored using the structure.
Abstract:
A semiconductor integrated circuit device includes an nonvolatile semiconductor memory cell and a write control circuit. The write control circuit supplies first and second pre-programming pulses and staircase programming pulses to the memory cell independently of the write statuses thereof. The second pre-programming pulse is higher than the first pre-programming pulse by a first potential difference. The staircase programming pulses have an initial voltage lower than the second pre-programming pulse and increase the voltage at a rate of a second potential difference per pulse. The second potential difference is smaller than the first potential difference.
Abstract:
A semiconductor device including a large capacity non-volatile memory and at least one random access memory, said the access time of said device being matched to the access time of each random access memory. The semiconductor memory device is comprised of: a non-volatile memory FLASH having a first reading time; a random access memory DRAM having a second reading time which is more than 100 times shorter than the first reading time; a circuit that includes a control circuit connected to both the FLASH and the DRAM and enabled to control accesses to those FLASH and DRAM; and a plurality of I/O terminals connected to the circuit. As a result, FLASH data is transferred to the DRAM before the DRAM is accessed, thereby matching the access time between the FLASH and the DRAM. Data is written back from the DRAM to the FLASH as needed, thereby keeping data matched between the FLASH and the DRAM and storing the data.
Abstract:
In a disturb test of a selected bit line selected from the plurality of bit lines, the first dummy cell corresponding to the selected bit line is selected, data is written by the constant current flowing in the first dummy cell, and a write bit line voltage is simulated which is the voltage generated in the selected bit line when data is written to the memory cell.
Abstract:
Non-volatile memory that has non-volatile charge storing capability such as EEPROM and flash EEPROM is programmed by a programming system that applies to a plurality of memory cells in parallel. Enhanced performance is achieved by programming each cell to its target state with a minimum of programming pulses using a data-dependent programming voltage. Further improvement is accomplished by performing the programming operation in multiphase where each successive phase is executed with a finer programming resolution such as employing a programming voltage with a gentler staircase waveform. These features allow rapid and accurate convergence to the target states for the group of memory cells being programmed in parallel, thereby allowing each cell to store several bits of information without sacrificing performance.
Abstract:
A nonvolatile semiconductor memory is provided with a main memory array and a sub-memory array. When rewriting a portion of data having been written in the main memory cell array, a modification data is written into the sub-memory cell array without erasing said main memory cell array. Further, correspondent information on a first address of the main memory cell array storing a data to be modified and a second address of the sub-memory cell array storing the modification data is recorded. At the time of a readout operation, a readout address is compared with the first address recorded in the correspondent information. When said comparison result indicates consistency, a data in the sub-memory cell array of the second address corresponding to the first address is read out. Otherwise, when the comparison result indicates inconsistency, a data in the main memory cell array corresponding to the readout address is read out.
Abstract:
To provide a non-volatile semiconductor memory device which can increase the speed of a writing operation of a physical checker pattern, a logical checker pattern, etc. carried out in an inspection process. First group writing circuits 30a, 30c connected to even-numbered bit lines BL0, BL2 and second group writing circuits 30b, 30d connected to odd-numbered bit lines BL1, BL3 are controlled to an active state and a non-active state respectively on the basis of control signals TSE, TSO. The writing operation of the physical checker pattern is carried out by a program operation for a first page which is carried out while a first word and the first group writing circuits are set to the active state, a program operation for a second page which is carried out while a second word line and the second group writing circuits are set to the active state, and a simultaneous verify operation of the first and second pages which is carried out while the first and second word lines and all the writing circuits are set to the active state.