Abstract:
A composite containing an integrated circuit chip having conductive site thereon and electrically conductive leads that are interconnected to the conductive site by electrically conductive wire; wherein the wire is coated with a dielectric material. Also, a method for fabricating the composite is provided.
Abstract:
Method of manufacturing semiconductor elements equipped with leads which are connected to electrodes and formed of wires including the steps of positioning each semiconductor element on a bonding stage, feeding a tip end of the wire under a bonding tool so that the bonding tool presses the tip end against the electrode to bond it to the electrode, shifting the bonding tool to away from the tip end and pressing the wire against wire-cutting section of the bonding stage, and pulling the wire away from the bonding tool to cut the wire.
Abstract:
A compression bond is formed between a gold or gold alloy wire and lead/tin solder by forming a head on the wire and forcing the head into a pad of the solder by thermosonic, or thermocompression, or ultrasonic compression bonding techniques. This forms a gold/tin intermetallic compound which in turn forms the bond. The head of the wire is maintained out of contact with any underlying surface, and surrounded by the solder.
Abstract:
A method for bonding an aluminum wire to a minute pad of an electronic circuit by an ultrasonic bonding technique. An anodized aluminum wire having its surface subjected to insulating coating is used. The bonding is effected such that this anodized aluminum wire is pressed against the pad by means of a wedge and, while a load is being thereby applied to the wire, ultrasonic vibrations are caused in the wedge. The alumite is exfoliated from the base material by application of the load and ultrasonic energy to the wire, and this base material and pad are bonded together at this exfoliated portion.
Abstract:
The silver-gold alloy bonding wire of the present invention includes an alloy composed of not lower than 10% and not higher than 30% of gold (Au) and not lower than 30 ppm and not higher than 90 ppm of calcium (Ca) with the remainder of silver (Ag) at purity relative to a metallic element except for elements Au and Ca of 99.99% or higher, in mass percentage; a layer enriched with oxygen (O) and calcium (Ca) formed as a surface layer on the surface of the alloy; and a gold-enriched layer formed immediately below the surface layer.
Abstract:
The silver-gold alloy bonding wire of the present invention includes an alloy composed of not lower than 10% and not higher than 30% of gold (Au) and not lower than 30 ppm and not higher than 90 ppm of calcium (Ca) with the remainder of silver (Ag) at purity relative to a metallic element except for elements Au and Ca of 99.99% or higher, in mass percentage; a layer enriched with oxygen (O) and calcium (Ca) formed as a surface layer on the surface of the alloy; and a gold-enriched layer formed immediately below the surface layer.
Abstract:
Provided is a semiconductor package that may prevent deformation of stacked semiconductor chips and minimize a semiconductor package size. The semiconductor package includes a package base substrate, a lower chip stacked on the package base substrate, an upper chip stacked on the lower chip, and a first die attach film (DAF) attached to a bottom surface of the upper chip to cover at least a portion of the lower chip. The first DAF may be a multi-layer film including a first attaching layer contacting the bottom surface of the upper chip and a second attaching layer attached to a bottom of the first attaching layer to cover at least a portion of a side surface of the lower chip.
Abstract:
A semiconductor package includes a first lead frame type having a first type of package leads and a pre-molded portion, and a second lead frame type having a second type of package leads that surround a die pad and are supported by the pre-molded portion. An integrated circuit is attached to the die pad and electrically connected to the first and second types of leads with bond wires. A mold compound, which forms a mold cap, covers the first and second lead frame types, the integrated circuit and the bond wires. The first lead frame type may be a QFP type and the second lead frame type may be a QFN type.
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
Abstract:
A package is disclosed. The package includes a premolded substrate having a leadframe structure, a first device attached to the leadframe structure, and a molding material covering at least part of the leadframe structure and the first device. It also includes a second device attached to the premolded substrate.