Abstract:
Apparatus, methods, and systems are provided for a memory layer layout for a three-dimensional memory. The memory layer includes a plurality of memory array blocks; a plurality of memory lines coupled thereto; and a plurality of zia contact areas for coupling the memory layer to other memory layers in a three-dimensional memory. The memory lines extend from the memory array blocks, are formed using a sidewall defined process, and have a half pitch dimension smaller than the nominal minimum feature size capability of a lithography tool used in forming the memory lines. The zia contact areas have a dimension that is approximately four times the half pitch dimension of the memory lines. The memory lines are arranged in a pattern that allows a single memory line to intersect a single zia contact area and to provide area between other memory lines for other zia contact areas. Other aspects are disclosed.
Abstract:
A method is provided for programming a memory cell having a first terminal coupled to a word line and a second terminal coupled to a bit line. During a first predetermined time interval, the word line is switched from a first standby voltage to a first voltage, the bit line is switched from a second standby voltage to a predetermined voltage, and a voltage drop across the first and second terminals is a safe voltage that does not program the memory cell. During a second predetermined time interval, the word line is switched from the first voltage to a second voltage, and a voltage drop across the first and second terminals is a programming voltage that is sufficient to program the memory cell. Numerous other aspects are provided.
Abstract:
A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
Abstract:
Methods of programming two terminal memory cells are provided. A method includes: (a) reading information of a memory page including first, second, and nth memory cells, the information including first, second, and nth program pulse tuning instructions; (b) creating a first program pulse in accordance with the first program pulse tuning instructions to program the first memory cell; (c) locking the first memory cell from further programming pulses; (d) creating a second program pulse in accordance with the second program pulse tuning instructions to program the second memory cell; (e) locking the second memory cell from further programming pulses; and (f) creating an nth program pulse in accordance with the nth program pulse tuning instructions to program the nth memory cell.
Abstract:
A memory layer in a three-dimensional memory array is provided. The memory layer includes a plurality of memory lines and vias formed by a damascene process using an imprint lithography template having a plurality of depths, wherein at least one depth corresponds to the memory lines and wherein at least one depth corresponds to the vias, and a plurality of memory cells operatively coupled to the memory lines. Numerous other aspects are disclosed.
Abstract:
Methods of programming two terminal memory cells are provided. A method includes: (a) reading information of a memory page including first, second, and nth memory cells, the information including first, second, and nth program pulse tuning instructions; (b) creating a first program pulse in accordance with the first program pulse tuning instructions to program the first memory cell; (c) locking the first memory cell from further programming pulses; (d) creating a second program pulse in accordance with the second program pulse tuning instructions to program the second memory cell; (e) locking the second memory cell from further programming pulses; and (f) creating an nth program pulse in accordance with the nth program pulse tuning instructions to program the nth memory cell.
Abstract:
A memory array having memory cells comprising a diode and a phase change material is reliably programmed by maintaining all unselected memory cells in a reverse biased state. Thus leakage is low and assurance is high that no unselected memory cells are disturbed. In order to avoid disturbing unselected memory cells during sequential writing, previously selected word and bit lines are brought to their unselected voltages before new bit lines and word lines are selected. A modified current mirror structure controls state switching of the phase change material.
Abstract:
A memory cell is provided that includes a diode and a resistance-switching material layer coupled in series with the diode. The resistance-switching material layer: (a) includes a material from the family consisting of XvOw, wherein X represents an element from the family consisting of Hf and Zr, and wherein the subscripts v and w have non-zero values that form a stable compound, and (b) has a thickness between 20 and 65 angstroms. Other aspects are also provided.
Abstract:
A nonvolatile memory device includes a plurality of nonvolatile memory cells arranged in a substantially hexagonal pattern. The nonvolatile memory cells may be pillar shaped non-volatile memory cells which can be patterned using triple or quadruple exposure lithography or by using a self-assembling layer.
Abstract:
A method of programming a memory cell is provided. The memory cell includes a memory element having a first conductive material layer, a first dielectric material layer above the first conductive material layer, a second conductive material layer above the first dielectric material layer, a second dielectric material layer above the second conductive material layer, and a third conductive material layer above the second dielectric material layer. One or both of the first and second conductive material layers comprises a stack of a metal material layer and a highly doped semiconductor material layer. The memory cell has a first memory state upon fabrication corresponding to a first read current. The method includes applying a first programming pulse to the memory cell with a first current limit. The first programming pulse programs the memory cell to a second memory state that corresponds to a second read current greater than the first read current.