Abstract:
A method of programming a memory cell is provided. The memory cell includes a memory element having a first conductive material layer, a first dielectric material layer above the first conductive material layer, a second conductive material layer above the first dielectric material layer, a second dielectric material layer above the second conductive material layer, and a third conductive material layer above the second dielectric material layer. One or both of the first and second conductive material layers comprises a stack of a metal material layer and a highly doped semiconductor material layer. The memory cell has a first memory state upon fabrication corresponding to a first read current. The method includes applying a first programming pulse to the memory cell with a first current limit. The first programming pulse programs the memory cell to a second memory state that corresponds to a second read current greater than the first read current.
Abstract:
A method is provided for programming a memory cell in a memory array. The memory cell includes a resistivity-switching layer of a metal oxide or nitride compound, and the metal oxide or nitride compound includes exactly one metal. The method includes programming the memory cell by changing the resistivity-switching layer from a first resistivity state to a second programmed resistivity state, wherein the second programmed resistivity state stores a data state of the memory cell. Numerous other aspects are provided.
Abstract:
A method is provided for programming a memory cell in a memory array. The memory cell includes a resistivity-switching layer of a metal oxide or nitride compound, and the metal oxide or nitride compound includes exactly one metal. The method includes programming the memory cell by changing the resistivity-switching layer from a first resistivity state to a second programmed resistivity state, wherein the second programmed resistivity state stores a data state of the memory cell. Numerous other aspects are provided.
Abstract:
A method of programming a memory cell is provided. The memory cell includes a memory element having a first conductive material layer, a first dielectric material layer above the first conductive material layer, a second conductive material layer above the first dielectric material layer, a second dielectric material layer above the second conductive material layer, and a third conductive material layer above the second dielectric material layer. One or both of the first and second conductive material layers comprises a stack of a metal material layer and a highly doped semiconductor material layer. The memory cell has a first memory state upon fabrication corresponding to a first read current. The method includes applying a first programming pulse to the memory cell with a first current limit. The first programming pulse programs the memory cell to a second memory state that corresponds to a second read current greater than the first read current.
Abstract:
In some aspects, a memory cell is provided that includes a steering element and a memory element. The memory element includes a first conductive material layer, a first dielectric material layer disposed above the first conductive material layer, a second conductive material layer disposed above the first dielectric material layer, a second dielectric material layer disposed above the second conductive material layer, and a third conductive material layer disposed above the second dielectric material layer. One or both of the first conductive material layer and the second conductive material layer comprise a stack of a metal material layer and a highly doped semiconductor material layer. Numerous other aspects are provided.
Abstract:
A nonvolatile memory cell is provided that includes a diode and a reversible resistance-switching element that includes a resistance-switching metal oxide or nitride, the metal oxide or nitride including only one metal. Numerous other aspects are provided.
Abstract:
A MIIIM diode and method of fabricating are disclosed. In one aspect, the MIIIM diode comprises a first metal electrode, a first region comprising a first insulator material having an interface with the first metal electrode, a second region comprising a second insulator material having an interface with the first insulator material, a third region comprising a third insulator material having an interface with the second insulator material, and a second metal electrode having an interface with the third insulator material. At least one of the first, second, or third insulator materials is lanthanum oxide.