-
公开(公告)号:CN110222449A
公开(公告)日:2019-09-10
申请号:CN201910514508.6
申请日:2019-06-14
Applicant: 北京卫星环境工程研究所
Abstract: 具有检漏区的航天器AIT工艺布局方法。本发明公开了一种超大型载人航天器AIT中心功能区域配置结构,包括转载间、检漏区、总装与质测区、总装与电测区、力学试验区、热试验区、EMC试验区、主物流通道和总装配套库房,其中,结构整体上呈“工”字形,第一横上依次布置热试验区、检漏区、和力学试验区,这些区域之间彼此连通供超大型载人航天器转运;竖立部分形成中间主物流通道,通道中部一侧有EMC试验区,另一侧有转载间、总装配套库房;第二横上一侧设置电测区,另一侧设置质测区,通道顶部与检漏区连通,中部和下部分别与两侧设置的各区连通。本发明区域布局合理,航天器流转顺畅、路径合理,场地、资源占用、物流等相互协调,应用效果良好。
-
公开(公告)号:CN110095659A
公开(公告)日:2019-08-06
申请号:CN201910357975.2
申请日:2019-04-30
Applicant: 北京卫星环境工程研究所
Abstract: 本发明公开一种深空探测巡视器通讯天线指向精度动态测试方法,该方法通过对相机分别进行内部参数和外部参数标定,并通过调整相机测量高度、距离、拍摄角度实现每台相机对巡视器的全覆盖,获得通讯天线的实时同步拍照及照片保存;针对每组测量照片,利用图像特征提取、特征点匹配、前方交会及后方交会组合测量实现通讯天线在巡视器本体坐标系下指向信息的自动解算并结合巡视器在北东地坐标系下位姿信息测量结果,确定试验过程中天线在北东地坐标系下的动态指向信息;同时将测试过程中的实测结果与天线的控制目标值进行比对,确定通讯天线的动态指向精度。本发明对通讯天线指向的测量精度优于0.04°,测量频率不低于12Hz,有效保障了型号地面测试任务。
-
公开(公告)号:CN108664722A
公开(公告)日:2018-10-16
申请号:CN201810420281.4
申请日:2018-05-04
Applicant: 北京卫星环境工程研究所
IPC: G06F17/50
Abstract: 本发明公开了一种基于增强现实的卫星电缆装配导引系统,包括导引信息生成模块、图像采集模块、电缆识别模块、舱板定位模块、导引信息可视化模块、导引状态控制模块,通过增强现实的方式引导操作人员快速地实现卫星电缆的装配。此外,本发明也公开了一种卫星电缆的装配导引方法。本发明提高了电缆铺设效率和复杂卫星装配场景下的电缆网信息查询的便捷性,减少了电缆铺设差错发生效率并简化了导引工艺信息的预定义过程。
-
公开(公告)号:CN106584453A
公开(公告)日:2017-04-26
申请号:CN201610423346.1
申请日:2016-06-15
Applicant: 北京卫星环境工程研究所
IPC: B25J9/16
CPC classification number: B25J9/161 , G05B2219/40192
Abstract: 本发明涉及航天器机械臂人机交互系统,包括控制模块和智能终端模块:其中控制模块包括:a)无线通信模块1,b)控制策略确定模块:根据接收到的控制模式代号及系统参数状态确定当前对机械臂系统的控制策略,c)机械臂监控模块;智能终端模块包括:a)无线通信模块2;b)人机交互模块;c)模式设定控件响应模块;d)参数处理显示模块。本发明提出的方法能够在操作者与机械臂进行交互操作过程中,使操作者可以便捷对地机械臂系统进行“控制策略切换”与“参数监视”,使人机交互过程更为高效简单。
-
公开(公告)号:CN104374359A
公开(公告)日:2015-02-25
申请号:CN201410643977.5
申请日:2014-11-07
Applicant: 北京卫星环境工程研究所
IPC: G01B21/22
CPC classification number: G01B21/22
Abstract: 本发明公开一种基于编码器反馈的吊索倾角测量装置,包括外壳、摆杆一、摆杆二、编码器一、编码器二,外壳为长方体结构,具有安装平面和四个侧面,侧面上开设有与吊索平行的纵长开口,纵长开口中设置有横向加强肋条,加强肋条上设置有摆杆轴孔,相对侧面上的摆杆轴孔分别形成两个轴线,与外壳顶部的安装平面平行且互相垂直不交叉,摆杆一和摆杆二的顶部设置过索孔,两者“十字相交”于过索孔,且两摆杆的门字型分别呈倒立结构通过转轴安装在摆杆轴孔中,以供吊索穿过,两编码器的外壳对应设置在横向加强肋条的外部,其转轴分别与两摆杆的转轴安装固定,两摆杆摆动时,两编码器分别与转轴同步转动,由两编码器的转角,计算出吊索在水平两个方向的倾角。
-
公开(公告)号:CN118644611A
公开(公告)日:2024-09-13
申请号:CN202410608623.0
申请日:2024-05-16
Applicant: 哈尔滨工业大学 , 北京卫星环境工程研究所
IPC: G06T17/00 , G02B30/00 , G02B5/08 , G02B7/182 , G02B7/198 , G02B27/62 , B25J11/00 , G06T3/4038 , G06T5/70
Abstract: 本发明公开了一种基于镜面反射的狭小空间三维重建装置和方法,属于三维重建技术领域。3D相机和直线电动推杆均通过连接件固定连接在机械臂的法兰上,二轴旋转支架固定连接于直线电动推杆的末端,平面反射镜与二轴旋转支架转动连接,且平面反射镜的镜面始终位于3D相机的视场范围内。直线电动推杆能够控制平面反射镜伸缩运动。本发明通过精密的机械控制和先进的点云处理方法,能够有效地重建狭小空间的三维结构。不仅提高了数据的精度和质量,而且极大地扩展了3D重建技术的应用范围。解决了现有的三维重建方法无法满足狭小空间的三维重建需求的技术问题。
-
公开(公告)号:CN117401188A
公开(公告)日:2024-01-16
申请号:CN202311564681.X
申请日:2023-11-22
Applicant: 北京卫星环境工程研究所
IPC: B64G7/00
Abstract: 本申请公开了一种航天器展开机构自适应重力补偿方法和系统,该方法包括:当机器人跟随展开机构运动时,获取展开机构的活动部件坐标系在转动平面内与竖直方向的转角,以及获取机器人末端托举点的实际托举力;获取托举点在活动部件坐标系中的坐标;基于托举点在活动部件坐标系中的坐标、活动部件坐标系在转动平面内与竖直方向的转角和机器人末端托举点的实际托举力,确定活动部件重心在活动部件坐标系中的横纵坐标比值和机器人待施加的目标托举力大小,以进行自适应重力补偿。该方案能够精准地确定出活动部件重心在活动部件坐标系中的横纵坐标比值和机器人待施加的目标托举力大小,实现了活动部件质量特性未知条件下的自适应重力补偿。
-
公开(公告)号:CN116300560A
公开(公告)日:2023-06-23
申请号:CN202211647026.6
申请日:2022-12-21
Applicant: 北京卫星环境工程研究所
IPC: G05B19/042
Abstract: 本发明公开了一种面向人机协作的卫星生产线站点控制系统,其特征在于,包括通讯与消息管理模块、工序管理模块、工艺信息展示模块、设备控制模块、检验控制模块。本发明中,管控系统与站点控制系统采用去中心化的消息发布/订阅模式进行通讯,实现了各站点设备与管控系统的互联互通,解决传统集中式管理模式的信息孤立、实时性差、交互响应慢等问题,提升卫星脉动生产线精细化管控水平;设计生产线站点控制系统,向上连接管控系统,向下连接站点内机器设备和人员,兼顾人工作业的信息展示与机器自动执行的控制功能,解决现有制造执行系统对人员、机器、系统之间缺乏有效交互的问题,实现操作人员与机器设备的有机融合。
-
公开(公告)号:CN116214139A
公开(公告)日:2023-06-06
申请号:CN202211647028.5
申请日:2022-12-21
Applicant: 北京卫星环境工程研究所
Abstract: 本发明公开了一种基于双机器人协同的卫星生产线自动装配系统,包括卫星舱板,还包括控制软件系统、螺钉上料台、打钉末端执行器、螺钉涂胶末端执行器、电连接器插拔末端执行器、机器人B、导热硅脂涂覆末端执行器、设备抓取末端执行器、零部件上料台、机器人A、视觉装置。本发明中,相对传统人工卫星装配方法,本系统不需要消耗大量人力资源,运行成本低,装配速度与装配精度都得到很大的提高,可以有效解决人工装配效率难以满足卫星生产线批产要求的难题;相对传统人工卫星装配方法,本系统可以自主安全地完成大质量设备的自动化安装任务,解决人工安装大质量设备时人力资源的过度使用与安全隐患频发的问题。
-
公开(公告)号:CN111609986B
公开(公告)日:2022-06-07
申请号:CN202010588249.4
申请日:2020-06-24
Applicant: 北京卫星环境工程研究所
IPC: G01M7/02
Abstract: 本发明公开了一种多态运输载荷的减振参数的处理方法,包括:根据静力试验计算运输对象的一阶基频,根据运输减振试验获取减振系统的加速度值和最大实测位移值,基于所述一阶基频调整阻尼减震器的刚度和数量,并设置所述减振系统的工作频带,基于所述加速度值计算所述减振系统对所述运输对象冲击的响应特性以得到最大计算位移值,根据所述最大实测位移值验证所述运输对象的晃动是否超过所述最大计算位移值。通过使用本方法,可适用于多态载荷的减振性能,可实现减振参数的精确量化,进而优化包装箱产品以降低重复设计成本。
-
-
-
-
-
-
-
-
-