Abstract:
A microelectronic device includes a die with input/output (I/O) terminals, and a dielectric layer on the die. The microelectronic device includes electrically conductive pillars which are electrically coupled to the I/O terminals, and extend through the dielectric layer to an exterior of the microelectronic device. Each pillar includes a column electrically coupled to one of the I/O terminals, and a head contacting the column at an opposite end of the column from the I/O terminal. The head extends laterally past the column in at least one lateral direction. Methods of forming the pillars and the dielectric layer are disclosed.
Abstract:
An embodiment is a method including forming a first interconnect structure over a first substrate, forming a redistribution via over the first interconnect structure, the redistribution via being electrically coupled to at least one of the metallization patterns of the first interconnect structure, forming a redistribution pad over the redistribution via, the redistribution pad being electrically coupled to the redistribution via, forming a first dielectric layer over the redistribution pad, and forming a second dielectric layer over the first dielectric layer. The method also includes patterning the first and second dielectric layers, forming a bond via over the redistribution pad and in the first dielectric layer, the bonding via being electrically coupled to the redistribution pad, the bond via overlapping the redistribution via, and forming a first bond pad over the bonding via and in the second dielectric layer, the first bond pad being electrically coupled to the bond via.
Abstract:
An integrated circuit structure includes a substrate, and a first metal layer over the substrate. The integrated circuit structure further includes a second insulating layer over the first metal layer, the second insulating layer having a damascene opening and two via openings. The damascene opening has a first depth. The two via openings have a second depth greater than the first depth. The integrated circuit structure further includes a stress buffer having a flat upper surface extending from a first side of the stress buffer to a second side of the stress buffer, the first side and second side being parallel, the stress buffer having a thickness between the upper surface of the stress buffer and the first metal layer, the thickness being less than the second depth and greater than the first depth. The integrated circuit structure further includes a second metal layer over the stress buffer.
Abstract:
Methods and structures of connecting at least two integrated circuits in a 3D arrangement by a zigzag conductive chain are disclosed. The zigzag conductive chain, acting as a spring or self-adaptive contact structure (SACS) in a wafer bonding process, is designed to reduce bonding interface stress, to increase bonding interface reliability, and to have an adjustable height to close undesirable opens or voids between contacts of the two integrated circuits.
Abstract:
Methods and structures of connecting at least two integrated circuits in a 3D arrangement by a zigzag conductive chain are disclosed. The zigzag conductive chain, acting as a spring or self-adaptive contact structure (SACS) in a wafer bonding process, is designed to reduce bonding interface stress, to increase bonding interface reliability, and to have an adjustable height to close or eliminate undesirable opens or voids between two integrated circuits.
Abstract:
A method of manufacturing a semiconductor device includes forming an opening in a first substrate and filling the opening with a metal to form a first connection electrode. The first substrate is then polished by chemical mechanical polishing under conditions such that a polishing rate of the metal is less that of the region surrounding the metal. The chemical mechanical polishing thereby causes the first connection electrode to protrude from the surface of the first substrate. The first substrate is stacked with a second substrate having a second connection electrode. The first and second connection electrodes are bonded by applying pressure and heating to a temperature that is below the melting point of the metal of the first connection electrode.
Abstract:
A structure includes a substrate, and an interconnect structure over the substrate. The structure further includes a through-substrate-via (TSV) extending through the interconnect structure and into the substrate, the TSV comprising a conductive material layer. The structure further includes a dielectric layer having a first portion over the interconnect structure and a second portion within the TSV, wherein the first portion and the second portion comprise a same material. The conductive material layer includes a first section separated from substrate by the second portion of the dielectric layer. The conductive material layer further includes a second section over a top surface of the second portion of the dielectric layer. The conductive material layer further includes a third section over the second section, wherein the third section has a width greater than a width of the second section.
Abstract:
A semiconductor device utilizing die edge contacts is provided. An integrated circuit die has a post-passivation layer with a trench filled with a conductive material extending from a contact to a die edge, thereby forming a die edge contact. Optionally, a through substrate via may be positioned along the die edge such that the conductive material in the trench is electrically coupled to the through-substrate via, thereby forming a larger die edge contact. The integrated circuit die may be placed in a multi-die package wherein the multi-die package includes walls having a major surface perpendicular to a major surface of the integrated circuit die. The die edge contacts are electrically coupled to contacts on the walls of the multi-die package. The multi-die package may include edge contacts for connecting to another substrate, such as a printed circuit board, a packaging substrate, a high-density interconnect, or the like.
Abstract:
Disclosed is a semiconductor device wherein an insulation layer has a via opening with an aluminum layer in the via opening and in contact with the last wiring layer of the device. There is a barrier layer on the aluminum layer followed by a copper plug which fills the via opening. Also disclosed is a process for making the semiconductor device.
Abstract:
An integrated circuit structure includes a substrate, and a first metal layer over the substrate. The integrated circuit structure further includes a second insulating layer over the first metal layer, the second insulating layer having a damascene opening and two via openings. The damascene opening has a first depth. The two via openings have a second depth greater than the first depth. The integrated circuit structure further includes a stress buffer having a flat upper surface extending from a first side of the stress buffer to a second side of the stress buffer, the first side and second side being parallel, the stress buffer having a thickness between the upper surface of the stress buffer and the first metal layer, the thickness being less than the second depth and greater than the first depth. The integrated circuit structure further includes a second metal layer over the stress buffer.