摘要:
Some embodiments described herein relate to a substrate with a surface comprising a silane or a silane derivative covalently attached to optionally substituted cycloalkene or optionally substituted heterocycloalkene for direct conjugation with a functionalized molecule of interest, such as a polymer, a hydrogel, an amino acid, a nucleoside, a nucleotide, a peptide, a polynucleotide, or a protein. In some embodiments, the silane or silane derivative contains optionally substituted norbornene or norbornene derivatives. Method for preparing a functionalized surface and the use in DNA sequencing and other diagnostic applications are also disclosed.
摘要:
Described herein are RNA arrays, and compositions and methods for generating RNA arrays, particularly high density RNA arrays. The disclosed methods for generating RNA arrays utilize template DNA arrays and RNA polymerase to generate RNA arrays. In some embodiments, the disclosed methods use an RNA polymerase and modified ribonucleosides to generate modified RNA arrays for various applications, e.g. RNA arrays having higher nuclease resistance, more conformationally stable RNA arrays, and higher binding affinity RNA aptamer arrays. In some embodiments, the disclosed methods are used to generate RNA bead arrays.
摘要:
A microarray analysis method, in which a microarray obtained by arranging probes on a substrate surface having an irregular shape is irradiated with excitation light and fluorescence amounts of the probes excited by the excitation light are obtained as numerical data, includes a step (a) of measuring the fluorescence amounts of the probes to acquire fluorescence image data, a step (b) of receiving reflected light and/or scattered light from the substrate surface to acquire the irregular shape of the substrate surface of the microarray as alignment image data based on the light receiving intensities of the light, and a step (c) of determining positions of the probes on the fluorescence image data based on the alignment image data.
摘要:
The invention relates to a method for producing polymers, in particular synthetic nucleic acid double strands of optional sequence, comprising the steps: (a) provision of a support having a surface area which contains a plurality of individual reaction areas, (b) location-resolved synthesis of nucleic acid fragments having in each case different base sequences in several of the individual reaction areas, and (c) detachment of the nucleic acid fragments from individual reaction areas.
摘要:
Methods and compositions are disclosed relating to the localization of nucleic acids to arrays such as silane-free arrays, and of sequencing the nucleic acids localized thereby.
摘要:
A biochip used for quantitative analysis of a target DNA contained in a sample. The biochip includes a type I chamber that includes a primer designed to bind to the target DNA, an internal standard DNA of a first amount that has a sequence different from a sequence of the target DNA, and is amplifiable with the primer, and a fluorescent probe that is designed to bind to a part of a PCR product of the target DNA and to a part of a PCR product of the internal standard DNA. The fluorescent probe fluoresces differently for the PCR product of the target DNA and the PCR product of the internal standard DNA. The biochip also includes a type II chamber that includes the internal standard DNA of a second amount, the primer, and the fluorescent probe. The first and second amounts are different.
摘要:
Methods of amplifying nucleic acid on a solid support are described. Beads and template, each in known concentrations, are employed so a range of template to bead ratios can be exploited. Where the beads contain primers, the template can be amplified. After amplification, non-covalently bound template is removed, so as to leave beads with extended primers (or beads with primers that were not extended).
摘要:
The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support.
摘要:
A method and apparatus for performing melting curve analyses of nucleic acids on a microarray is described. The present method includes varying the temperature of a fluid on a microarray to dissociate and remove target DNA, scanning the mircoarray for fluorescence, collecting the target DNA removed from the microarray, and reusing the collected target DNA and the microarray. The apparatus of the present disclosure includes a microarray stage, a light source and detector, and a temperature controller, wherein the temperature controller is configured to adjust the temperature of a fluid within a sample chamber on the microarray such that the temperature of the fluid is varied during the analysis such that target DNA is dissociated from the microarray, and wherein the light source is directed to the microarray and the resulting fluorescence is perceived by the detector.