Abstract:
A conductor has a core wire and a surface coated with the same kind of material as the core wire material. A copper wire (1) which forms the core wire has its surface cleaned by a preparatory processing mechanism (3) and then it is fed to a continuous sputtering unit (4). The continuous sputtering unit (4) coats the surface of the core wire (1) with copper by a coaxial magnetron sputtering method. Thereafter, this wire is drawn, by cold working, into a thin wire of predetermined size.
Abstract:
A method for attaching a prefabricated miniature coaxial wire to a first electrical connection point, the prefabricated miniature coaxial wire having an electrically conductive core disposed within an electrical insulation layer disposed within an electrically conductive shield layer, includes attaching an exposed portion of the electrically conductive core at a distal end of the prefabricated miniature coaxial wire to the first electrical connection point, thereby establishing electrical conductivity between the electrically conductive core and the first electrical connection point, depositing a layer of electrically insulating material onto the exposed portion of the electrically conductive core such that the exposed portion of the electrically conductive core and the first electrical connection point is encased in the layer of electrically insulating material, and connecting the electrically conductive shield layer to a second electrical connection point using a connector formed from an electrically conductive material.
Abstract:
A wire bonding method includes steps of: forming a Free Air Ball (FAB) at an end of a metal wire; pressing the FAB onto a flat surface of a workpiece to deform the FAB; contacting the deformed FAB to a metal pad, wherein the metal pad is made of a first material and the metal wire is made of a second material, and a hardness of the first material is smaller than a hardness of the second material; and bonding the deformed FAB on the metal pad.
Abstract:
A semiconductor apparatus is provided. The semiconductor apparatus includes: a base having a main surface on which a terminal is disposed; a first semiconductor device retained on the main surface of the base and having a top surface on which an electrode is disposed and a bottom surface facing the main surface of the base; a connection member connecting the terminal and the electrode; an encapsulant disposed on the main surface of the base and covering the terminal, the first semiconductor device and the connection member; and a heat dissipating member disposed on the encapsulant and having a space that opens in a direction extending perpendicular to the main surface of the base. The encapsulant is disposed in the space and, in a side view of the base, a peak of the connection member is located inside the space.
Abstract:
A light emitting device mount includes a positive lead terminal, a negative lead terminal, and a resin portion. Each of the positive lead terminal and the negative lead terminal includes a first main surface, a second main surface opposite to the first main surface in a thickness direction of each of the positive lead terminal and the negative lead terminal, and an end surface which is provided between the first main surface and the second main surface and which includes a first recessed surface area and a second recessed surface area. The first recessed surface area extends from the first main surface. The second recessed surface area extends from the second main surface, includes a closest point closest to the first main surface, and includes an extension part that extends outward of the closest point and toward the second main surface.
Abstract:
A light emitting device mount includes a positive lead terminal, a negative lead terminal, and a resin portion. Each of the positive lead terminal and the negative lead terminal includes a first main surface, a second main surface opposite to the first main surface in a thickness direction of each of the positive lead terminal and the negative lead terminal, and an end surface which is provided between the first main surface and the second main surface and which includes a first recessed surface area and a second recessed surface area. The first recessed surface area extends from the first main surface. The second recessed surface area extends from the second main surface, includes a closest point closest to the first main surface, and includes an extension part that extends outward of the closest point and toward the second main surface.
Abstract:
A mount includes a terminal, and a resin portion. The terminal includes a first surface, a second surface, and an end surface having first and second recessed areas that are extend from the first and second surfaces, respectively. The resin portion is integrally formed with the terminal, and at least partially covers the end surface so that the first and second surfaces are at least partially exposed. The resin portion forms a recessed part to accommodate the light emitting device. The second recessed area includes a closest point that is positioned closest to the first surface, and an extension part that extends outward of the closest point and toward the second surface side. The extension part is formed at least on opposing end surfaces of the pair of positive and negative lead terminal. The first recessed area is arranged on the exterior side relative to the closest point.
Abstract:
A wire structure, which may be configured for a semiconductor device, is disclosed. The wire may include an elongate flexible core formed of a conductor material and a cladding layer covering an outer surface of the core. The cladding layer may be a conductor. In various aspects the cladding layer and core have a different grain sizes. An average grain size of the core material may several orders of magnitude greater than an average grain size of the cladding layer material. The cladding layer may be an alloy having a varying concentration of a minor component across its thickness. Methods of forming a wire structure are also disclosed.
Abstract:
An alloy wire made of a material selected from one of a group consisting of a silver-gold alloy, a silver-palladium alloy and a silver-gold-palladium alloy is provided. The alloy wire is with a polycrystalline structure of a face-centered cubic lattice and includes a plurality of grains. A central part of the alloy wire includes slender grains or equi-axial grains, and the other parts of the alloy wire consist of equi-axial grains. A quantity of the grains having annealing twins was 20 percent or more of the total quantity of the grains of the alloy wire.
Abstract:
A chip package structure includes a circuit substrate, a chip, at least one bonding wire, and an adhesive layer. The circuit substrate has a bonding surface and at least one pad disposed on the bonding surface. The chip is disposed on the bonding surface of the circuit substrate and has an active surface away from the circuit substrate and at least one contact pad disposed on the active surface. The bonding wire is connected between the contact pad and the pad, such that the chip is electrically connected to the circuit substrate through the bonding wire. The bonding wire includes a copper layer, a nickel layer covering the copper layer, and a gold layer covering the nickel layer. The adhesive layer is disposed between the pad and the bonding wire and between the contact pad and the bonding wire and respectively covers two terminals of the bonding wire.