Abstract:
An electronic component includes a substrate configured to include a first portion that first thermal conductivity, and have a first surface and a second surface opposite to the first surface; a second portion configured to be formed inside the first portion, and have second thermal conductivity lower than the first thermal conductivity; a first terminal configured to be formed to correspond to the second portion on a side of the first surface; and a second terminal configured to be formed on a side of the second surface.
Abstract:
A packaging structure includes a first substrate including a first metal terminal and a first protruding resin portion formed at a first surface; a second substrate including a second metal terminal and a second protruding resin portion formed at a second surface, the second metal terminal being made of the same kind of metal as the first metal terminal; and a sealing portion filled between the first surface of the first substrate and the second surface of the second substrate, the first metal terminal and the second metal terminal being directly bonded with each other, the first protruding resin portion and the second protruding resin portion being directly bonded with each other, each of the first protruding resin portion and the second protruding resin portion being made of a resin material that does not include fillers, and the sealing portion being made of a resin material including fillers.
Abstract:
A semiconductor device includes a semiconductor substrate with a wiring layer formed thereon, an insulating film formed on the semiconductor substrate so as to cover the wiring layer and having a pad opening exposing a portion of the wiring layer as a pad, a front surface protection film formed on the insulating film and being constituted of an insulating material differing from the insulating film and having a second pad opening securing exposure of at least a portion of the pad, a seed layer formed on the pad, and a plating layer formed on the seed layer.
Abstract:
In an embodiment, an electronic component includes a first dielectric layer including an organic component having a decomposition temperature of at least 180° C., a semiconductor die embedded in the first dielectric layer, a second dielectric layer arranged on a first surface of the first dielectric layer, the second dielectric layer including a photo definable polymer composition and defining two or more discrete openings having conductive material, and a first substrate arranged on the second dielectric layer and on the conductive material. One or more contact pads are arranged on an outermost surface of the first substrate.
Abstract:
An electronic component includes a substrate configured to include a first portion that first thermal conductivity, and have a first surface and a second surface opposite to the first surface;a second portion configured to be formed inside the first portion, and have second thermal conductivity lower than the first thermal conductivity;a first terminal configured to be formed to correspond to the second portion on a side of the first surface; and a second terminal configured to be formed on a side of the second surface.
Abstract:
Methods processing substrates are provided. The method may include providing a bonding layer between a substrate and a carrier to bond the substrate to the carrier, processing the substrate while the substrate is supported by the carrier, and removing the bonding layer to separate the substrate from the carrier. The bonding layer may include a thermosetting glue layer and thermosetting release layers provided on opposing sides of the thermosetting glue layer.
Abstract:
A method for forming a direct hybrid bond and a device resulting from a direct hybrid bond including a first substrate having a first set of metallic bonding pads, preferably connected to a device or circuit, capped by a conductive barrier, and having a first non-metallic region adjacent to the metallic bonding pads on the first substrate, a second substrate having a second set of metallic bonding pads capped by a second conductive barrier, aligned with the first set of metallic bonding pads, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the metallic bonding pads on the second substrate, and a contact-bonded interface between the first and second set of metallic bonding pads capped by conductive barriers formed by contact bonding of the first non-metallic region to the second non-metallic region.
Abstract:
The invention provides a semiconductor device including a substrate, a dielectric layer, a dummy bonding pad, a bonding pad, a redistribution layer, and a metal interconnect. The substrate includes a non-device region and a device region. The dielectric layer is on the non-device region and the device region. The dummy bonding pad is on the dielectric layer of the non-device region. The metal interconnect is in the dielectric layer of the non-device region and connected to the dummy bonding pad. The bonding pad is on the dielectric layer of the device region. The buffer layer is between the bonding pad and the dielectric layer. The buffer layer includes metal, metal nitride, or a combination thereof. The redistribution layer is on the dielectric layer and connects the dummy bonding pad and the bonding pad.
Abstract:
A method forms a connecting pillar to a bonding pad of an integrated circuit. A seed layer is formed over the bond pad. Photoresist is deposited over the integrated circuit. An opening is formed in the photoresist over the bond pad. The connecting pillar is formed in the opening by plating.
Abstract:
Provided are a semiconductor device and a method of manufacturing the same. A carrier is removed after a first semiconductor die and a second semiconductor die are stacked on each other, and then a first encapsulant is formed, so that the carrier may be easily removed when compared to approaches in which a carrier is removed from a wafer having a thin thickness.