Abstract:
A surface mounting semiconductor component includes a semiconductor device, a circuit board, a number of first solder bumps, and a number of second solder bumps. The semiconductor device included a number of die pads. The circuit board includes a number of contact pads. The first solder bumps are configured to bond the semiconductor device and the circuit board. Each of the first solder bumps connects at least two die pads with a corresponding contact pad. Each of the second solder bumps connects a die pad with a corresponding contact pad. A method of forming a surface mounting component or a chip scale package assembly wherein the component or assembly has at least two different types of solder bumps.
Abstract:
In the semiconductor device, a bump electrode which connects a semiconductor chip and a wiring board is made up of a first part surrounded by an insulating film and a second part exposed from the insulating film. Since it is possible to reduce a width of the bump electrode while increasing a height of the bump electrode, a distance between the neighboring bump electrodes can be increased, and a filling property of a sealing material can be improved.
Abstract:
A device package includes a substrate having an active surface. Electrical connection bumps are deposited on the active surface and are arranged in an array having a perimeter. At least one electronic component is formed at a region of the active surface, where the region is located outside of the perimeter of the array of electrical connection bumps. When the device package is coupled with external circuitry via the electrical connection bumps, the region at which the electronic component is formed is suspended over the electronic circuitry. This region is subject to a lower stress profile than a region of the active surface circumscribed by the perimeter. Thus, stress sensitive electronic components can be located in this lower stress region of the active surface.
Abstract:
A device includes a metal pad over a substrate. A passivation layer includes a portion over the metal pad. A post-passivation interconnect (PPI) is electrically coupled to the metal pad, wherein the PPI comprises a portion over the metal pad and the passivation layer. A polymer layer is over the PPI. A dummy bump is over the polymer layer, wherein the dummy bump is electrically insulated from conductive features underlying the polymer layer.
Abstract:
A multi-chip package structure includes a first chip, at least one blocking structure, a plurality of first conductive bumps, a second chip, a plurality of second conductive bumps and an underfill. The first chip has a chip connecting zone, a plurality of first inner pads in the chip connecting zone and a plurality of first outer pads outside of the chip connecting zone. The blocking structure is disposed between the first inner pads and the first outer pads and surrounds the first inner pads. The first conductive bumps are disposed on the first outer pads. The second chip is flipped on the chip connecting zone and has a plurality of second pads. The second conductive bumps are disposed between the first inner pads and the second pads. The underfill is disposed between the first chip and the second chip so as to cover the second conductive bumps.
Abstract:
Embodiments of mechanisms for forming a package structure are provided. The package structure includes a semiconductor die and a substrate. The package structure includes a pillar bump and an elongated solder bump bonded to the semiconductor die and the substrate. A height of the elongated solder bump is substantially equal to a height of the pillar bump. The elongated solder bump has a first width, at a first horizontal plane passing through an upper end of a sidewall surface of the elongated solder bump, and a second width, at a second horizontal plane passing through a midpoint of the sidewall surface. A ratio of the second width to the first width is in a range from about 0.5 to about 1.1.
Abstract:
A multi-chip package structure includes a first chip, at least one blocking structure, a plurality of first conductive bumps, a second chip, a plurality of second conductive bumps and an underfill. The first chip has a chip connecting zone, a plurality of first inner pads in the chip connecting zone and a plurality of first outer pads outside of the chip connecting zone. The blocking structure is disposed between the first inner pads and the first outer pads and surrounds the first inner pads. The first conductive bumps are disposed on the first outer pads. The second chip is flipped on the chip connecting zone and has a plurality of second pads. The second conductive bumps are disposed between the first inner pads and the second pads. The underfill is disposed between the first chip and the second chip so as to cover the second conductive bumps.
Abstract:
An integrated circuit system comprising a first integrated and at least one of a second integrated circuit, interposer or printed circuit board. The first integrated circuit further comprising a wiring stack, bond pads electrically connected to the wiring stack, and bump balls formed on the bond pads. First portions of the wiring stack and the bond pads form a functional circuit, and second portions of the wiring stack and the bond pads form a test circuit. A portion of the bump balls comprising dummy bump balls. The dummy bump balls electrically connected to the second portions of the wiring stack and the bond pads. The at least one of the second integrated circuit, interposer or printed circuit board forming a portion of the test circuit.
Abstract:
An integrated circuit structure includes an alignment bump and an active electrical connector. The alignment bump includes a first non-solder metallic bump. The first non-solder metallic bump forms a ring encircling an opening therein. The active electrical connector includes a second non-solder metallic bump. A surface of the first non-solder metallic bump and a surface of the second non-solder metallic bump are substantially coplanar with each other.
Abstract:
A method for fabricating an electronic device, and an electronic device in a stacked configuration, includes a rear face of an integrated-circuit chip that is fixed to a front face of a support wafer. A protective wafer is located facing and at a distance from the front face of the chip, and an infused adhesive is interposed between the chip and the protective wafer and located on a zone of the front face of the chip outside a central region of this front face. The infused adhesive includes a curable adhesive and solid spacer elements infused in the curable adhesive. An obstruction barrier is arranged between the chip and the protective wafer and is disposed outside the central region of the front face of the chip. An encapsulation ring surrounds the chip, the protective wafer and the obstruction barrier.