Abstract:
Provided is a disclosure for optimizing the number of semiconductor devices on a wafer/substrate. The optimization comprises laying out, cutting, and packaging the devices efficiently.
Abstract:
A technique which improves the reliability in coupling between a bump electrode of a semiconductor chip and wiring of a mounting substrate, more particularly a technique which guarantees the flatness of a bump electrode even when wiring lies in a top wiring layer under the bump electrode, thereby improving the reliability in coupling between the bump electrode and the wiring formed on a glass substrate. Wiring, comprised of a power line or signal line, and a dummy pattern are formed in a top wiring layer beneath a non-overlap region of a bump electrode. The dummy pattern is located to fill the space between wiring to reduce irregularities caused by the wiring and space in the top wiring layer. A surface protection film formed to cover the top wiring layer is flattened by CMP.
Abstract:
To improve reliability of a semiconductor device, in a flip-chip bonding step, a solder material that is attached to a tip end surface of a projecting electrode in advance and a solder material that is applied in advance over a terminal (bonding lead) are heated and thereby integrated and electrically connected to each other. The terminal includes a wide part (a first portion) with a first width W1 and a narrow part (a second portion) with a second width W2. When the solder material is heated, the thickness of the solder material arranged over the narrow part becomes smaller than the thickness of the solder material arranged in the wide part. Then, in the flip-chip bonding step, a projecting electrode is arranged over the narrow part and bonded onto the narrow part. Thus, the amount of protrusion of the solder material can be reduced.
Abstract:
In some embodiments, the present invention relates to a method of integrated chip bonding. The method forms a conductive trace on a surface of a first work piece, and a conductive bump on a surface of a second work piece. The conductive bump has a recess. A reflow process is performed on a solder layer to electrically couple the conductive trace and the conductive bump. The solder layer fills a part of the recess during the reflow process. By filling the recess during the reflow process, electrical shorting between the conductive trace and an adjacent conductive is reduced.
Abstract:
A technique which improves the reliability in coupling between a bump electrode of a semiconductor chip and wiring of a mounting substrate, more particularly a technique which guarantees the flatness of a bump electrode even when wiring lies in a top wiring layer under the bump electrode, thereby improving the reliability in coupling between the bump electrode and the wiring formed on a glass substrate. Wiring, comprised of a power line or signal line, and a dummy pattern are formed in a top wiring layer beneath a non-overlap region of a bump electrode. The dummy pattern is located to fill the space between wirings to reduce irregularities caused by the wirings and space in the top wiring layer. A surface protection film formed to cover the top wiring layer is flattened by CMP.
Abstract:
A bump structure includes a first end; and a second end opposite the first end. The bump structure further includes a side connected between the first end and the second end, wherein the side comprises a recess for a reflowed solder material to fill, and the recess defines a first surface adjacent to the first end and a second surface adjacent to the second end.
Abstract:
A substrate with a built-in electronic component includes multiple resin insulating layers including first, second, third and fourth insulating layers, multiple conductor layers including a first wiring layer including a first pad, a second wiring layer including a second pad, and a third wiring layer including third and fourth pads, multiple via conductors including a first via connecting the first and second pads through the second insulating layer, a second via connecting the second and third pads through the third and fourth insulating layers, and a third via connected to the fourth pad through the fourth insulating layer, and an electronic component positioned a cavity through the second and third insulating layers such that the third via is connecting terminal of the component and fourth pad. The second and third vias have filled plating filling opening portions through the third and fourth insulating layers and through the fourth insulating layer.
Abstract:
Methods and devices for a semiconductor device having conductive pads to prevent solder reflow are disclosed and may include a substrate comprising conductive pads of rectangular shape and neck-down portions on opposite sides of the rectangular shape, a semiconductor die comprising conductive pillars, and a solder electrically coupling the conductive pillars to the conductive pads. The neck-down portions may comprise a solder mask for the conductive pads to prevent solder from flowing in an unwanted direction on the conductive pads. The conductive pillars may comprise an elliptical cross-section with a minor axis length X and a major axis length Y. The major axis of the elliptical cross-section may be parallel to a long axis of the rectangular shape of the conductive pads. A decrease (W) in width of the conductive pads from the rectangular shape to the neck-down portions may be defined by X/5≦W≦X/2.
Abstract:
A display device includes, on a TFT substrate, a driver IC having a first bump and a second bump, a first terminal and a second terminal connecting respectively to the first bump and the second bump, and wiring interconnecting the first terminal and the second terminal. The driver IC also includes a resistance detection circuit that detects resistance between the first bump and the second bump.
Abstract:
A conductive structure for a semiconductor chip and a method for forming the conductive structure are provided. The semiconductor chip comprises a plurality of first pads and second pads. The pad area is defined with a first area, a second area and a third area, wherein the first area is located between the second area and the third area. Each of the first pads and the second pads are interlaced to each other on the first area. The conductive structure comprises a plurality of conductive bumps formed on each of the first pads and the second pads respectively to electrically connect with each of the first pads and the second pads. Each of the conductive bumps has a first bump-width disposed on the first area and a second bump-width disposed on one of the second and third areas in which the first bump-width is shorter than the second bump-width.