Abstract:
Semiconductor device packages, packaging methods, and packaged semiconductor devices are disclosed. In some embodiments, a package for a semiconductor device includes an integrated circuit die mounting region and a molding material around the integrated circuit die mounting region. An interconnect structure is over the molding material and the integrated circuit die mounting region. A protection pattern is in a perimeter region of the package around the interconnect structure. The protection pattern includes a first conductive feature that is vertical within the package near a second conductive feature. The first conductive feature has a first width, and the second conductive feature has a second width. The second width is greater than the first width.
Abstract:
A package includes a semiconductor chip. The semiconductor chip includes a test pad, and a plurality of microbump pads, wherein each microbump pad of the plurality of microbump pads is electrically connected to the test pad. The package further includes a substrate; and a plurality of microbumps configured to electrically connect the semiconductor chip to the substrate, wherein each microbump of the plurality of microbumps is electrically connected to a corresponding microbump pad of the plurality of microbump pads. The package further includes a package substrate, wherein the package substrate comprises a bump pad, wherein an area of the bump pad is greater than a combined area of the test pad and the plurality of microbump pads. The package further includes a bump configured to electrically connect the substrate to the package substrate.
Abstract:
A static random access memory (SRAM) including a bit cell, wherein the bit cell includes at least two p-type pass gates. The SRAM further includes a bit line connected to the bit cell, and a bit line bar connected to the bit cell. The SRAM further includes a pre-discharge circuit connected to the bit line and to the bit line bar, wherein the pre-discharge circuit includes at least two n-type transistors. The SRAM further includes cross-coupled transistors connected to the bit line and to the bit line bar, wherein each transistor of the cross-coupled transistors is an n-type transistor. The SRAM further includes a write multiplexer connected to the bit line and to the bit line bar, wherein the write multiplexer includes two p-type transistors.
Abstract:
An embodiment of the disclosure is a structure comprising an interposer. The interposer has a test structure extending along a periphery of the interposer, and at least a portion of the test structure is in a first redistribution element. The first redistribution element is on a first surface of a substrate of the interposer. The test structure is intermediate and electrically coupled to at least two probe pads.
Abstract:
Semiconductor device design methods and conductive bump pattern enhancement methods are disclosed. In some embodiments, a method of designing a semiconductor device includes designing a conductive bump pattern design, and implementing a conductive bump pattern enhancement algorithm on the conductive bump pattern design to create an enhanced conductive bump pattern design. A routing pattern is designed based on the enhanced conductive bump pattern design. A design rule checking (DRC) procedure is performed on the routing pattern.
Abstract:
A semiconductor structure including a semiconductor substrate and at least one patterned dielectric layer is provided. The semiconductor substrate includes a semiconductor portion, at least one first device, at least one second device and at least one first dummy ring. The at least one first device is disposed on a first region surrounded by the semiconductor portion. The at least one second device and the at least one first dummy ring are disposed on a second region, and the second region surrounds the first region. The at least one patterned dielectric layer covers the semiconductor substrate.
Abstract:
A semiconductor feature includes: a semiconductor substrate; a dielectric structure and a semiconductor device disposed on the semiconductor substrate; an interconnecting structure disposed in the dielectric structure and connected to the semiconductor device; an STI structure disposed in the semiconductor substrate and surrounding the semiconductor device; two DTI structures penetrating the semiconductor substrate and the STI structure and surrounding the semiconductor device; a passivation structure connected to the semiconductor substrate and the DTI structures and located opposite to the interconnecting structure; and a conductive structure surrounded by the passivation structure, penetrating the semiconductor substrate and the STI structure into the dielectric structure, located between the DTI structures and electrically connected to the semiconductor device via the interconnecting structure.
Abstract:
A semiconductor package includes a first semiconductor substrate, an array of conductive bumps, a second semiconductor substrate, and a spacing pattern. The first semiconductor substrate includes a pad region and an array of first pads disposed within the pad region. The array of conductive bumps is disposed on the array of first pads respectively. The second semiconductor substrate is disposed over the first semiconductor substrate and includes an array of second pads bonded to the array of conductive bumps respectively. The spacing pattern is disposed between the first semiconductor substrate and the second semiconductor substrate, wherein the spacing pattern is located at a periphery of the pad region.
Abstract:
A semiconductor device includes a first die having a first bonding layer; a second die having a second bonding layer disposed over and bonded to the first bonding layer; a plurality of bonding members, wherein each of the plurality of bonding members extends within the first bonding layer and the second bonding layer, wherein the plurality of bonding members includes a connecting member electrically connected to a first conductive pattern in the first die and a second conductive pattern in the second die, and a dummy member electrically isolated from the first conductive pattern and the second conductive pattern; and an inductor disposed within the first bonding layer and the second bonding layer. A method of manufacturing a semiconductor device includes bonding a first inductive coil of a first die to a second inductive coil of a second die to form an inductor.
Abstract:
Provided is a semiconductor device including a substrate, an interconnect structure, a first passivation layer, a stress buffer layer, a pad structure, and a second passivation layer. The interconnect structure is disposed on the substrate. The first passivation layer and the stress buffer layer are disposed on the interconnect structure. The pad structure includes: a lower portion embedded in the first passivation layer and the stress buffer layer, and laterally wrapped by the first passivation layer and the stress buffer layer; and an upper portion on the lower portion. The upper portion has a periphery laterally offset outward from a periphery of the lower portion, so that a bottom surface of the upper portion contacts a top surface of the stress buffer layer. The second passivation layer is disposed on the stress buffer layer and laterally wraps the upper portion of the upper portion of the pad structure.