Abstract:
The present invention provides a chip package that includes a semiconductor chip, at least one recess, a plurality of first redistribution metal lines, and at least one protrusion. The semiconductor chip has a plurality of conductive pads disposed on an upper surface of the semiconductor chip. The recess extends from the upper surface to a lower surface of the semiconductor chip, and is arranged on the side of the semiconductor chip. The first redistribution metal lines are disposed on the upper surface, electrically connected to the conductive pad individually, and extended into the recesses separately. The protrusion is disposed in the recess and located between the adjacent first redistribution metal lines.
Abstract:
Provided is a semiconductor device configured to prevent a penetration of moisture into an internal circuit. The moisture from a bonding pad to the internal circuit is blocked by providing an underlying polysilicon film (10) formed as a lower layer of a bonding pad, a bonding pad (1) formed above the underlying polysilicon film (10) through intermediation of an inter-layer insulation film (21), and an outer circumferential interconnecting line (3) formed so as to surround an outer side of the bonding pad 1, and by connecting the outer circumferential interconnecting line (3) and the underlying polysilicon film (10) with a continuous outer circumferential contact.
Abstract:
A semiconductor package includes a first semiconductor substrate, an array of conductive bumps, a second semiconductor substrate, and a spacing pattern. The first semiconductor substrate includes a pad region and an array of first pads disposed within the pad region. The array of conductive bumps is disposed on the array of first pads respectively. The second semiconductor substrate is disposed over the first semiconductor substrate and includes an array of second pads bonded to the array of conductive bumps respectively. The spacing pattern is disposed between the first semiconductor substrate and the second semiconductor substrate, wherein the spacing pattern is located at a periphery of the pad region.
Abstract:
Provided is a semiconductor device configured to prevent a penetration of moisture into an internal circuit. The moisture from a bonding pad to the internal circuit is blocked by providing an underlying polysilicon film (10) formed as a lower layer of a bonding pad, a bonding pad (1) formed above the underlying polysilicon film (10) through intermediation of an inter-layer insulation film (21), and an outer circumferential interconnecting line (3) formed so as to surround an outer side of the bonding pad 1, and by connecting the outer circumferential interconnecting line (3) and the underlying polysilicon film (10) with a continuous outer circumferential contact.
Abstract:
Various semiconductor chip input/output structures and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a semiconductor chip that has a first conductor pad and a passivation structure. A second conductor pad is fabricated around but not in physical contact with the first conductor pad to leave a gap. The second conductor pad is adapted to protect a portion of the passivation structure.
Abstract:
A semiconductor device includes a semiconductor integrated circuit device (1). In the semiconductor integrated circuit device (1), a semiconductor integrated circuit (5) is formed on a center of the surface of a semiconductor substrate (3), and a plurality of electrode terminals (71, 73, . . . ) are provided on the surface of the semiconductor substrate (3). A protection film (9) is provided on the surface of the semiconductor substrate (3) such that the surfaces of the electrode terminals (71, 73) are exposed. The electrode terminals (71, 73, . . . ) include an electrode terminal (73) having a thin portion (74). The surface of the thin portion (74) is located below the surfaces of the electrode terminals except for the electrode terminal (73) having the thin portion (74) among the electrode terminals (71, 73, . . . ).
Abstract:
The invention provides a semiconductor device. The semiconductor device includes a semiconductor chip having an active surface on which pads are disposed, a passivation layer pattern disposed to cover the active surface of the semiconductor chip and to expose the pads, a first insulation layer pattern disposed on the passivation layer pattern, a second insulation layer pattern disposed on only a portion of the first insulation layer pattern, and redistribution line patterns electrically connected to the pads and disposed so as to extend across the second insulation layer pattern and the first insulation layer pattern. A method of fabricating the same is also provided.
Abstract:
The present invention provides a chip package that includes a semiconductor chip, at least one recess, a plurality of first redistribution metal lines, and at least one protrusion. The semiconductor chip has a plurality of conductive pads disposed on an upper surface of the semiconductor chip. The recess extends from the upper surface to a lower surface of the semiconductor chip, and is arranged on the side of the semiconductor chip. The first redistribution metal lines are disposed on the upper surface, electrically connected to the conductive pad individually, and extended into the recesses separately. The protrusion is disposed in the recess and located between the adjacent first redistribution metal lines.
Abstract:
A package includes a chip formed in a first area of the package and a molding compound formed in a second area of the package adjacent to the first area. A first polymer layer is formed on the chip and the molding compound, a second polymer layer is formed on the first polymer layer, and a plurality of interconnect structures is formed between the first polymer layer and the second polymer layer. A metal-insulator-metal (MIM) capacitor is formed on the second polymer layer and electrically coupled to at least one of the plurality of interconnect structures. A metal bump is formed over and electrically coupled to at least one of the plurality of interconnect structures.
Abstract:
Various semiconductor chip input/output structures and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a semiconductor chip that has a first conductor pad and a passivation structure. A second conductor pad is fabricated around but not in physical contact with the first conductor pad to leave a gap. The second conductor pad is adapted to protect a portion of the passivation structure.