Abstract:
Provided may include an electron beam generator, an image apparatus including the same, and an optical apparatus. The optical apparatus includes a first and second laser apparatuses providing a first and second laser beams on a substrate, and a first optical system provided between the first and second laser apparatuses and the substrate to focus the first and second laser beams. The first and second laser beams overlap with each other generating an interference beam, thereby decreasing a spot size of the interference beam to be smaller than a wavelength of each of the first and second laser beams at a focal point.
Abstract:
An apparatus and methods for small-angle electron beam scattering measurements in a reflection or a backscattering mode are provided. The apparatus includes an electron source, electron collimation optics before a sample, electron projection optics after the sample, a sample stage capable of holding the sample, and a electron detector module. The electrons emitted from the source are collimated and positioned to impinge nanostructures on the sample. The signals resulting from the interactions between the impinging electrons and the nanostructures are further magnified by the electron projection optics to reach a sufficient angular resolution before recorded by the electron detector module.
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
A multipole lens (100) which can produce static magnetic fields showing different strengths in the direction of travel of an electron beam has lens subasssemblies (10a, 10b, 10c) stacked on top of each other. The lens subassemblies (10a, 10b, 10c) have yokes (14a, 14b, 14c), respectively, and polar elements (12a, 12b, 12c), respectively. The polar elements (12a, 12b, 12c) have base portions (13a, 13b, 13c), respectively, magnetically coupled to the yokes (14a, 14b, 14c), respectively, and front end portions (11a, 11b, 11c), respectively, magnetically coupled to the base portions (13a, 13b, 13c), respectively. Magnetic field separators (20, 22) made of a nonmagnetic material are mounted between the front end portions (11a, 11b, 11c) which are successively adjacent to each other in the direction of stacking of the lens subassemblies (10a, 10b, 10c).
Abstract:
The purpose of the present invention is to provide a charged particle gun using merely an electrostatic lens, said charged particle gun being relatively small and having less aberration, and to provide a field emission-type charged particle gun having high luminance even with a high current. This charged particle gun has: a charged particle source; an acceleration electrode that accelerates charged particles emitted from the charged particle source; a control electrode, which is disposed further toward the charged particle source side than the acceleration electrode, and which has a larger aperture diameter than the aperture diameter of the acceleration electrode; and a control unit that controls, on the basis of a potential applied to the acceleration electrode, a potential to be applied to the control electrode.
Abstract:
A multi charged particle beam writing method includes emitting each corresponding beam in an “on” state while starting and continuing tracking control, shifting a writing position by beam deflection of the multi beams, in addition to tracking control, while continuing tracking control, emitting each corresponding beam in the next “on” state to the next writing position having been shifted while continuing tracking control, and returning the tracking position by resetting tracking control, after emitting each next corresponding beam to the next writing position having been shifted at least once, wherein writing of a predetermined region is completed by repeating the number of preset times a group of performing emitting, shifting, emitting, and returning, wherein the tracking time from start to reset of tracking control in at least one of the repeated groups is longer than the others.
Abstract:
An ion generator includes an arc chamber, a cathode that extends outward from the inside of the arc chamber in an axial direction and that emits a thermal electron into the arc chamber, a thermal reflector with a cylindrical shape provided around the cathode in a radial direction and extending in the axial direction, and a narrow structure configured to narrow a width in the radial direction of a gap between the cathode and the thermal reflector at a given position in the axial direction.
Abstract:
A charged particle beam device capable of observing a sample in an air atmosphere or gas atmosphere has a thin film for separating the atmospheric pressure space from the decompressed space. A vacuum evacuation pump evacuates a first housing; and a detector detects a charged particle beam (obtained by irradiation of the sample) in the first housing. A thin film is provided to separate the inside of the first housing and the inside of a second housing at least along part of the interface between the first and second housings. An opening part is formed in the thin film so that its opening area on a charged particle irradiation unit's side is larger than its opening area on the sample side; and the thin film which covers the sample side of the opening part transmits or allows through the primary charged particle beam and the charged particle beam.
Abstract:
An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object.
Abstract:
An embodiment is to provide a technique that continuously applies a certain amount of an electron beam to a sample by selecting a beam applied to the sample from an electron beam emitted from an electron source in a scanning electron microscope. A charged particle apparatus is configured, including: a mechanism that detects the distribution of electric current strength with respect to the emitting direction of an electron beam emitted from an electron source; a functionality that predicts a fluctuation of an electric current applied to a sample by predicting the distribution of the electric current based on the detected result; a functionality that determines a position at which a beam applied to the sample is acquired based on the predicted result; and a mechanism that controls a position at which a probe beam is acquired based on the determined result.