Abstract:
An apparatus for suppression of arcs in an electron beam generator including: a first module providing an operating voltage; a second module including a coil suitable for a voltage of at least 10 kV, and at least one free-wheeling diode connected in parallel to the coil; a third module including a first circuit component configured to detect a first actual value for electric voltage, and a first signal is producible when the first actual value falls below a first threshold value, a second circuit component by which a second actual value for electric current is detectable, and a second signal is generated when the second actual value exceeds a second threshold value, a control logic, which optionally links the first and second signals and a resultant output signal is producible; a semiconductor-based switch suitable for the voltage of at least 10 kV, which is opened based on the output signal.
Abstract:
A method for performing milling and imaging in a focused ion beam (FIB) system employing an inductively-coupled plasma ion source, wherein two sets of FIB system operating parameters are utilized: a first set representing optimized parameters for operating the FIB system in a milling mode, and a second set representing optimized parameters for operating in an imaging mode. These operating parameters may comprise the gas pressure in the ICP source, the RF power to the ICP source, the ion extraction voltage, and in some embodiments, various parameters within the FIB system ion column, including lens voltages and the beam-defining aperture diameter. An optimized milling process provides a maximum milling rate for bulk (low spatial resolution) rapid material removal from the surface of a substrate. An optimized imaging process provides minimized material removal and higher spatial resolutions for improved imaging of the substrate area being milled.
Abstract:
A plasma electron flood system, comprising a housing configured to contain a gas, and comprising an elongated extraction slit, and a cathode and a plurality of anodes residing therein and wherein the elongated extraction slit is in direct communication with an ion implanter, wherein the cathode emits electrons that are drawn to the plurality of anodes through a potential difference therebetween, wherein the electrons are released through the elongated extraction slit as an electron band for use in neutralizing a ribbon ion beam traveling within the ion implanter.
Abstract:
A high density plasma generated by microwave injection using a windowless electrodeless rectangular slotted antenna waveguide plasma source has been demonstrated. Plasma probe measurements indicate that the source could be applicable for low power ion thruster applications, ion implantation, and related applications. This slotted antenna plasma source invention operates on the principle of electron cyclotron resonance (ECR). It employs no window and it is completely electrodeless and therefore its operation lifetime is long, being limited only by either the microwave generator itself or charged particle extraction grids if used. The high density plasma source can also be used to extract an electron beam that can be used as a plasma cathode neutralizer for ion source beam neutralization applications.
Abstract:
According to one embodiment, an electron source includes a base body and a first cathode layer. The first cathode layer includes a first diamond layer including a plurality of first polycrystalline diamonds, and a first member including a first element. At least a part of the first diamond layer is located between the base body and the first member. The first element includes at least one selected from the group consisting of Pd, Ni, Co, W, Mo, Ir and Ru.
Abstract:
In one embodiment, a system for patterning a substrate includes a plasma chamber; a power source to generate a plasma within the plasma chamber; and an extraction plate system comprising a plurality of apertures and disposed along a side of the plasma chamber. The extraction plate system is configured to receive an extraction voltage that biases the extraction plate system with respect to the plasma chamber wherein the plurality of apertures are configured to extract a plurality of respective charged particle beamlets from the plasma. The system further includes a projection optics system to direct at least one of the plurality of charged particle beamlets to the substrate.
Abstract:
In one embodiment, a system for patterning a substrate includes a plasma chamber; a power source to generate a plasma within the plasma chamber; and an extraction plate system comprising a plurality of apertures and disposed along a side of the plasma chamber. The extraction plate system is configured to receive an extraction voltage that biases the extraction plate system with respect to the plasma chamber wherein the plurality of apertures are configured to extract a plurality of respective charged particle beamlets from the plasma. The system further includes a projection optics system to direct at least one of the plurality of charged particle beamlets to the substrate.
Abstract:
A plasma reactor that generates plasma in a workplace processing chamber by an electron beam, has an electron beam source chamber with a wall opposite to the electron beam propagation direction, the wall being profiled to compensate for a non-uniformity in electron beam density distribution.
Abstract:
A gas supply assembly is described for delivery of gas to a plasma flood gun. The gas supply assembly includes: a fluid supply package configured to deliver inert gas to a plasma flood gun for generating inert gas plasma including electrons for modulating surface charge of a substrate in ion implantation operation; and cleaning gas in the inert gas fluid supply package in mixture with the inert gas, or in a separate cleaning gas supply package configured to deliver cleaning gas to the plasma flood gun concurrently or sequentially with respect to delivery of inert gas to the plasma flood gun. A method of operating a plasma flood gun is also described, in which cleaning gas is introduced to the plasma flood gun, intermittently, continuously, or sequentially in relation to flow of inert gas to the plasma flood gun. The cleaning gas is effective to generate volatile reaction product gases from material deposits in the plasma flood gun, and to effect re-metallization of a plasma generation filament in the plasma flood gun.
Abstract:
A virtual cathode deposition apparatus utilises virtual plasma cathode for generation of high density electron beam to ablate a solid target. A high voltage electrical pulse ionizes gas to produce a plasma which temporarily appears in front of the target and serves as the virtual plasma cathode at the vicinity of target. This plasma then disappears allowing the ablated target material in a form of a plasma plume to propagate toward the substrate. Several virtual cathodes operating in parallel provide plumes that merge into a uniform plasma which when condensing on a nearby substrate leads to wide area deposition of a uniform thickness thin film.