Abstract:
An apparatus for polymerase chain reaction (PCR) diagnosis for normalizing light source power and fluorescence power and an operating method thereof are disclosed.
Abstract:
Provided are a pulse compressor and a two-photon excited fluorescence microscope. The microscope includes a light source which generates a laser beam having a pulse, a pulse compressor which compresses the pulse of the laser beam, an objective lens which provides the laser beam to a specimen, and image sensors which receive the laser beam and obtain images of the specimen. The pulse compressor may include a grating plate, a corner cube provided on one side of the grating plate, and a retroreflector provided on the other side of the grating plate.
Abstract:
Provided may include an electron beam generator, an image apparatus including the same, and an optical apparatus. The optical apparatus includes a first and second laser apparatuses providing a first and second laser beams on a substrate, and a first optical system provided between the first and second laser apparatuses and the substrate to focus the first and second laser beams. The first and second laser beams overlap with each other generating an interference beam, thereby decreasing a spot size of the interference beam to be smaller than a wavelength of each of the first and second laser beams at a focal point.
Abstract:
Disclosed is a high power ultra-short pulsed laser device increasing pulse energy by using resonators. A pulsed laser device may comprise a first resonator making a pump beam resonate primarily and passing the pump beam which resonated through a first output mirror; and a second resonator comprising a first multiple reflection mirror and a second multiple reflection mirror. Also, the first multiple reflection mirror includes at least one first small area mirror, and the second multiple reflection mirror includes at least one second small area mirror, and the second resonator makes the laser beam delivered from the first resonator resonate by reflecting the laser beam repetitively. Therefore, the pulsed laser device may increase pulse energy without using a multi-stage amplifier so that a high power ultra-short pulsed laser beam can be generated.
Abstract:
Disclosed is a PCR diagnosis apparatus. This apparatus includes a PCR chip configured to store a PCR sample, a light source part configured to generate laser light to be provided to the PCR sample, an optical modulator provided between the light source part and the PCR chip and configured to selectively provide the laser light to the PCR sample according to a code, a sensor configured to detect fluorescent light generated in the PCR sample by the laser light, and a code generator connected between the optical modulator and the sensor and configured to transmit an orthogonal code to the optical modulator and the sensor.
Abstract:
Provided are a laser device and an optical apparatus including the same. The laser device includes a pump light source configured to provide pump light, a gain medium configured to acquire a gain of seed laser light by using the pump light, a first curved mirror and a second curved mirror, which are provided at both sides of the gain medium to reflect the seed laser light into the gain medium, an output mirror configured to transmit a portion of the seed laser light reflected by the second curved mirror and reflect the other portion of the seed laser light to the gain medium, a first acoustic wave generator connected to the gain medium and configured to provide a first photoacoustic wave in the gain medium, and a second acoustic wave generator connected to the gain medium and configured to provide a second photoacoustic wave in the gain medium.
Abstract:
The present disclosure provides a sample analyzer and an analyzing method thereof. The sample analyzer includes a first beam source configured to provide a first energy beam to a sample, a second beam source configured to provide a second energy beam, which is different from the first energy beam, to the sample, a reflected beam sensor disposed between the second beam source and the sample to detect a reflected beam of the second energy beam, which is reflected by one side of the sample, and a transmitted beam sensor disposed adjacent to the other side of the sample to detect a transmitted beam of the second energy beam.
Abstract:
Disclosed is a pulsed laser system. The pulsed laser system comprises a laser oscillator, a first optical amplifier on a rear end of the laser oscillator, a first optical adjustor on a rear end of the first optical amplifier, and a second optical adjustor on a rear end of the first optical adjustor. The first optical adjustor comprises a saturable absorber, an adjusting compressor on a rear end of the saturable absorber, and a first plasma mirror on a rear end of the adjusting compressor.
Abstract:
Provided is a chromium ion-doped laser apparatus for medical application and a method of operating the laser apparatus, the apparatus including a laser beam generating unit to generate a laser beam, a converting unit to convert a wavelength of the generated laser beam to be a set wavelength, and an emitting unit to emit the laser beam having the converted wavelength to an object.
Abstract:
Disclosed is a hyperspectral imaging device, which includes a code generator that generates a code signal including first code information and second code information which are orthogonal to each other, a light transmitter that receives the code signal and generates output light including first modulated light modulated based on the first code information and second modulated light modulated based on the second code information, and a receiver that receives reflected light from which the output light is reflected from a sample and obtains a hyperspectral image based on the reflected light and the code signal, and the first modulated light has a first wavelength band and the second modulated light has a second wavelength band different from the first wavelength band.