Abstract:
One exemplary disclosed embodiment comprises a three-terminal stacked-die package including a field effect transistor (PET), such as a silicon PET, stacked atop a III-nitride transistor, such that a drain of the PET resides on and is electrically coupled to a source of the III-nitride transistor. A first terminal of the package is coupled to a gate of the FET, a second terminal of the package is coupled to a drain of the III-nitride transistor. A third terminal of the package is coupled to a source of the FET. In this manner, devices such as cascoded switches may be packaged in a stacked-die form, resulting in reduced parasitic inductance and resistance, improved thermal dissipation, smaller form factor, and lower manufacturing cost compared to conventional packages.
Abstract:
In one implementation, a semiconductor package includes a control conductive carrier having a die side and an opposite input/output (I/O) side connecting the semiconductor package to a mounting surface. The semiconductor package also includes a control FET of a power converter switching stage having a control drain attached to the die side of the control conductive carrier. The control conductive carrier is configured to sink heat produced by the control FET into the mounting surface. The semiconductor package includes a sync conductive carrier having another die side and another opposite I/O side connecting the semiconductor package to the mounting surface, and a sync FET of the power converter switching stage having a sync source attached to the die side of the sync conductive carrier.
Abstract:
A semiconductor device includes a semiconductor body having a first surface, a contact electrode on the first surface, and a passivation layer on the first surface adjacent the contact electrode and partially overlapping the contact electrode. The passivation layer comprises a layer stack with a first layer comprising an oxide on the first surface, and a second layer comprising a nitride on the first layer.
Abstract:
One exemplary disclosed embodiment comprises a high power semiconductor package configured as a buck converter having a control transistor, a sync transistor, a driver integrated circuit (IC) for driving the control and sync transistors, and a conductive clip electrically coupling a sync drain of the sync transistor to a first leadframe pad of the package, wherein the first leadframe pad of the package is electrically coupled to a control source of the control transistor using a wirebond. The conductive clip provides an efficient connection between the control source and the sync drain by direct mechanical connection and large surface area conduction. A sync source is electrically and mechanically coupled to a second leadframe pad providing a high current carrying capability, and high reliability. The resulting package has significantly reduced electrical resistance, form factor, complexity, and cost when compared to conventional packaging methods using wirebonds for transistor interconnections.
Abstract:
One exemplary disclosed embodiment comprises a three-terminal stacked-die package including a field effect transistor (FET), such as a silicon FET, stacked atop a III-nitride transistor, such that a drain of the FET resides on and is electrically coupled to a source of the III-nitride transistor. A first terminal of the package is coupled to a gate of the FET, a second terminal of the package is coupled to a drain of the III-nitride transistor. A third terminal of the package is coupled to a source of the FET. In this manner, devices such as cascoded switches may be packaged in a stacked-die form, resulting in reduced parasitic inductance and resistance, improved thermal dissipation, smaller form factor, and lower manufacturing cost compared to conventional packages.
Abstract:
One exemplary disclosed embodiment comprises a high power semiconductor package configured as a buck converter having a sync transistor with a top surface having a drain, a flip chip driver integrated circuit (IC) having an integrated control transistor, the flip chip driver IC driving the sync and control transistors, and a conductive clip electrically coupling the drain of the sync transistor to a common portion of the leadframe shared with a control source of the control transistor. In this manner, the leadframe and the conductive clip provide efficient current conduction by direct mechanical connection and large surface area conduction, significantly reducing package electrical resistance, form factor, complexity, and cost compared to conventional packages. Moreover, by integrating only the control transistor rather than both the control and sync transistor within the flip chip driver IC, the sync transistor may remain separate, simplifying manufacture and providing greater total surface area for thermal dissipation.
Abstract:
In one implementation, a high power semiconductor package is configured as a buck converter including a control transistor and a sync transistor disposed on a leadframe, a flip chip driver integrated circuit (IC) for driving the control and sync transistors, and conductive clips electrically coupling the top surfaces of the transistors to substrate pads such as leadframe pads. The source of the control transistor is electrically coupled to the drain of the sync transistor using the leadframe and one of the transistor conductive clips. In this manner, the leadframe and the conductive clips provide efficient current conduction by direct mechanical connection and large surface area conduction, thereby enabling a package with significantly reduced electrical resistance, form factor, complexity, and cost.
Abstract:
RF transistor amplifiers an RF transistor amplifier die having a semiconductor layer structure, an interconnect structure having first and second opposing sides, wherein the first side of the interconnect structure is adjacent a surface of the RF transistor amplifier die such that the interconnect structure and the RF transistor amplifier die are in a stacked arrangement, and one or more circuit elements on the first and/or second side of the interconnect structure.
Abstract:
The semiconductor die includes a base body, protruding portions and bonding pads. The base body has sidewalls. The protruding portions are laterally protruding from the sidewalls respectively. The bonding pads are disposed on the protruding portions respectively. The wafer dicing method includes following operations. Chips are formed on a semiconductor wafer. Bonding pads are formed on a border line between every two of the adjacent chips. A scribe line is formed and disposed along the bonding pads. A photolithographic pattern is formed on a top surface of the semiconductor wafer to expose the scribe line. The scribe line is etched to a depth in the semiconductor wafer substantially below the top surface layer to form an etched pattern. A back surface of the semiconductor wafer is thinned until the etched pattern in the wafer substrate is exposed.
Abstract:
A method for applying a bonding layer that is comprised of a basic layer and a protective layer on a substrate with the following method steps: application of an oxidizable basic material as a basic layer on a bonding side of the substrate, at least partial covering of the basic layer with a protective material that is at least partially dissolvable in the basic material as a protective layer. In addition, the invention relates to a corresponding substrate.