Abstract:
Embodiments herein include a replica communication path and monitor circuit to provide increased common mode transient immunity. As its name suggests, the monitor circuit monitors the replica communication path and produces an adjustment signal (common mode transient adjustment signal) to cancel presence of a common mode transient signal in one or more other communication paths conveying data signals.
Abstract:
In one implementation, a power unit for plugging into a mother board includes a power module situated on a substrate. The substrate is situated on conductive slats, each having an extended end away from the power module. Each of the conductive slats provides a mounting contact of the power unit. Each mounting contact is electrically coupled to the power module by electrical routing in the substrate. The mounting contacts are configured to provide electrical connection between the power module and the mother board.
Abstract:
A power semiconductor device is disclosed. The power semiconductor device includes a source region in a body region, a gate trench adjacent to the source region, and a source trench electrically coupled to the source region. The source trench includes a source trench conductive filler surrounded by a source trench dielectric liner, and extends into a drift region. The power semiconductor device includes a source trench implant below the source trench and a drain region below the drift region, where the source trench implant has a conductivity type opposite that of the drift region. The power semiconductor device may also include a termination trench adjacent to the source trench, where the termination trench includes a termination trench conductive filler surrounded by a termination trench dielectric liner. The power semiconductor device may also include a termination trench implant below the termination trench.
Abstract:
Some exemplary embodiments of a III-nitride power device including a HEMT with multiple interconnect metal layers and a solderable front metal structure using solder bars for external circuit connections have been disclosed. The solderable front metal structure may comprise a tri-metal such as TiNiAg, and may be configured to expose source and drain contacts of the HEMT as alternating elongated digits or bars. Additionally, a single package may integrate multiple such HEMTs wherein the front metal structures expose alternating interdigitated source and drain contacts, which may be advantageous for DC-DC power conversion circuit designs using III-nitride devices. By using solder bars for external circuit connections, lateral conduction is enabled, thereby advantageously reducing device Rdson.
Abstract:
A driver and protection circuit for driving a power switch is disclosed. The driver and protection circuit includes a fault detection block configured to detect a discrepancy between a reference drive signal and a measured voltage at a gate of the power switch. The driver and protection circuit also includes a short circuit detection block configured to detect a gate-to-source short circuit or a gate-to-drain short circuit of the power switch. The driver and protection circuit further includes a latch coupled to the fault detection block and the short circuit detection block to selectively turn off an output driver coupled to the gate of the power switch when a fault or a short circuit is detected, and wherein the latch is configured to send a diagnostic signal when the fault or the short circuit is detected.
Abstract:
In one implementation, a semiconductor package includes a control conductive carrier having a die side and an opposite input/output (I/O) side connecting the semiconductor package to a mounting surface. The semiconductor package also includes a control FET of a power converter switching stage having a control drain attached to the die side of the control conductive carrier. The control conductive carrier is configured to sink heat produced by the control FET into the mounting surface. The semiconductor package includes a sync conductive carrier having another die side and another opposite I/O side connecting the semiconductor package to the mounting surface, and a sync FET of the power converter switching stage having a sync source attached to the die side of the sync conductive carrier.
Abstract:
Disclosed is a power device, such as a power MOSFET device and a method for fabricating same. The device includes a field plate trench. The field plate trench has a predetermined width and a predetermined sidewall angle. The device further includes a single trench dielectric on sidewalls of the field plate trench and at a bottom of the field plate trench. The single trench dielectric has a bottom thickness that is greater than a sidewall thickness. The device also includes a field plate situated within the single trench dielectric.
Abstract:
According to one embodiment, a III-nitride transistor includes a conduction channel formed between first and second III-nitride bodies, the conduction channel including a two-dimensional electron gas. The transistor also includes at least one gate dielectric layer having a charge confined within to cause an interrupted region of the conduction channel and a gate electrode operable to restore the interrupted region of the conduction channel. The transistor can be an enhancement mode transistor. In one embodiment, the gate dielectric layer is a silicon nitride layer. In another embodiment, the at least one gate dielectric layer is a silicon oxide layer. The charge can be ion implanted into the at least one gate dielectric layer. The at least one gate dielectric layer can also be grown with the charge.
Abstract:
In one implementation, a power semiconductor package includes a conductive carrier including a switch node segment and a power output segment. The power semiconductor package also includes an integrated output inductor stacked over the conductive carrier and configured to couple the switch node segment to the power output segment. The power semiconductor package further includes a power stage stacked over the integrated output inductor, the power stage including a pulse-width modulation (PWM) control and driver coupled to a control transistor and a sync transistor.