Abstract:
In the light emitting device of the present invention, a silver alloy layer is formed on at least a portion of the surface of a frame on which a light emitting element is mounted. Because of this structure, a light emitting element mounting frame and a light emitting device that have improved corrosion resistance and the like and superior efficiency in taking light emitted from light emitting element to the outside can be provided.
Abstract:
Contact structures are formed by building a core structure on a substrate and over coating the core structure with a material that is harder or has a greater yield strength than the material of the core structure. The core structure may be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool may be moved to impart a desired shape to the wire. The wire is severed from the spool and over coated. As an alternative, the wire is not over coated. The substrate may be an electronic device, such as a semiconductor die.
Abstract:
Contact structures are formed by building a core structure on a substrate and over coating the core structure with a material that is harder or has a greater yield strength than the material of the core structure. The core structure may be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool may be moved to impart a desired shape to the wire. The wire is severed from the spool and over coated. As an alternative, the wire is not over coated. The substrate may be an electronic device, such as a semiconductor die.
Abstract:
Spring contact elements are attached to terminals of an electronic component, which may be a semiconductor die. The spring contact elements may comprise a flexible precursor element. The precursor element may be over coated with a resilient material. The spring contact elements may be elongate and attached to the terminals at one end. The other end of the spring contacts may be spaced away from the electronic component.
Abstract:
In order to provide an electronic component of a high frequency current suppression type, which can completely suppress a high frequency current to prevent an electromagnetic interference from occurring even when it is used at a high frequency, and a bonding wire for the same, the semiconductor integrated circuit device (IC) (17) operates at a high speed in using at a high frequency band, and a predetermined number of terminals (19) are provided with a high frequency current suppressor (21) for attenuating a high frequency current passing through the terminals themselves. This high frequency current suppressor (21) is a thin film magnetic substance having a range from 0.3 to 20 (nullm) in thickness, and is disposed on the entire surface of each terminal (19), covering a mounting portion to be mounted on a printed wiring circuit board (23) for mounting IC (17) and an edge including a connecting portion to a conductive pattern (25) disposed on the printed wiring circuit board (23). When the top end is connected with the conductive pattern (25) by means of a solder (27) in mounting the printed wiring circuit board (23) of IC (17), the vicinity of the mounting portion has conductivity in a using frequency band, which is less than a few tens MHz.
Abstract:
The present invention enhances the reliability of wire-bonding strength by reducing a variation in the entire transformation amount of a wire. At point P1, a bonding wedge 21 abuts the wire 71, whereby a load is exerted on the wire 71. The wire 71 transforms by an amount of transformation A, and the transformation stops at point P2. The transformation amount A varies greatly. At point P3 (T1), ultrasonic wave vibration is exerted and the transformation of the wire 71 is restarted. At this stage, a variation in the transformation amount A is absorbed by an amount of transformation B and therefore a variation in the transformation amount A+B becomes small. At point P4 (T1+T2), the transformation amount A+B is maintained substantially constant. At this point P4, the transformation amount of the wire 71 is set to 0 and the measurement of the transformation amount of the wire 71 is started. And until the transformation amount of the wire 71 reaches an amount of transformation C (point P5), a load and ultrasonic wave vibration are given.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
The invention relates to sensors of physical quantities such as pressure or acceleration sensors and, more specifically, to the mounting of the active part of the sensor on a base (30) bearing connection pins (32). According to the invention, an active part of the sensor is prepared. This active part is formed, for example, by micro-machined silicon wafers (10, 12) bearing electronic elements, electrical conductors and connection pads (22). A base (30) is thus prepared, provided with pins (32), and the pads (22) are electrically connected to the pin ends by conductive elements (wires 40). Then the wafer and the pin ends are plunged into an electrolytic bath so as to make an electrolytic deposit of conductive metal (42) on the pin ends, the pads and the conductive elements that connect them. Finally, this metal is oxidized or nitrized to constitute an insulating coat (44) on the connection pin ends, the pads and the conductive elements that connect them. Application to sensors of pressure, stresses, acceleration etc, designed to work in harsh environments.
Abstract:
A composite containing an integrated circuit chip having conductive site thereon and electrically conductive leads that are interconnected to the conductive site by electrically conductive wire; wherein the wire is coated with a dielectric material. Also, a method for fabricating the composite is provided.
Abstract:
The efficacy of electrical discharges for severing bond wires and/or for forming balls at the ends of bond wires (including bond wires already severed by alternative mechanisms) is improved by performing the electrical discharges in the presence of ultraviolet light. A "spark gap" is formed between an EFO electrode and the wire, one of which serves as the cathode of the spark gap. Preferably, the ultraviolet light is directed at the element serving as the cathode of the spark gap. Providing photoemission at the cathode element of the spark gap stabilizes arc/plasma formation and produces more reliable and predictable results. This technique may be used in conjunction with negative EFO systems or with positive EFO systems, and may benefit from either direct or field-assisted photoemission.