Abstract:
A corrected scanning electron microscope (CSEM) and a method of operating the CSEM for selectively separating a material contrast from a topography contrast is presented. The microscope and the method enable high imaging resolution with backscattered electrons generated from low energy primary electrons. The CSEM and the method is applicable to mask repair and circuit editing processes with resolution requirements in the low nm range or even below.
Abstract:
A Wien filter to be disposed inside a lens barrel made of a magnetic material includes: a plurality of electromagnetic poles disposed at equal angular intervals about a center axis of the lens barrel; a first magnetic shield disposed so as to cover the area around the plurality of electromagnetic poles; and a second magnetic shield disposed so as to cover the area around the first magnetic shield. The first magnetic shield is supported by a first support member made of a non-magnetic material provided at an inner surface of the second magnetic shield. The second magnetic shield is supported by a second support member made of a magnetic material provided at an inner surface of the lens barrel.
Abstract:
A novel sample holder for specimen support devices for insertion in electron microscopes. The novel sample holder of the invention allows for the introduction of gases or liquids to specimens for in situ imaging, as well as electrical contacts for electrochemical or thermal experiments.
Abstract:
Methods and systems for direct atomic layer etching and deposition on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform atomic layer etch and atomic layer deposition, expressing pattern with selected 3D-structure. Reducing the number of process steps in patterned atomic layer etch and deposition reduces manufacturing cycle time and increases yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding columns, and support superior, highly-configurable process execution and control.
Abstract:
A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions and is capable of operating at atmospheric pressure. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components.
Abstract:
An apparatus for characterizing a focused charged beam is provided. The apparatus includes a plurality of parallel conducting channels and at least one current sensing unit configured to measure current across each of the plurality of parallel conducting channels.
Abstract:
A method is provided for forming a three-dimensional article through successive fusion of parts of a powder bed. The method includes the steps of: applying a first powder layer on a work table; directing an electron beam from an electron beam source over the work table, the directing of the electron beam causing the first powder layer to fuse in first selected locations according to a pre-determined model, so as to form a first part of a cross section of the three dimensional article, and intensity modulating X-rays from the powder layer or from a clean work table with a patterned aperture modulator and a patterned aperture resolver, wherein a verification of at least one of a size, position, scan speed, or shape of the electron beam is achieved by comparing detected intensity modulated X-ray signals with saved reference values.
Abstract:
The present invention advantageously provides an ion milling device that can set a high-precision processing area with a simple structure. The ion milling device includes a sample holder that holds a sample and a mask partially restricting irradiation of the sample with an ion beam. The sample holder includes a first contact surface that contacts an end surface of the sample located on a passing orbit side of the ion beam, and a second contact surface that contacts an end surface of the mask so that the mask is located at a position spaced apart from the ion beam more than the first contact surface.
Abstract:
Features that create localized electric field enhancement are deliberately introduced on conductors where deposits having insulating characteristics can form. The purpose of the introduced features is to enhance localized breakdown of the deposits in order to maintain electrode conductivity.
Abstract:
A method of performing in-situ cleaning of a substrate includes inserting a gas cluster ion beam into a processing chamber containing a substrate, the gas cluster ion beam includes a broad gas cluster ion bean that reaches an entire surface of the substrate. The entire surface of the substrate becomes substantially uniform after an exposure to the gas cluster ion beam.