Abstract:
A semiconductor-device mounting structure includes a first semiconductor device and a plate-shaped second semiconductor device connected to the first semiconductor device. The first semiconductor device includes a flexible board, an electronic component, and a sealing resin. The flexible board includes a bendable flexible portion and a hard portion. The flexible portion is bent at a boundary with the hard portion, along a shape of the electronic component such that the flexible board covers the electronic component. The flexible board and the electronic component are sealed with the sealing resin. The first semiconductor device is provided vertical to the second semiconductor device such that the hard portion is provided parallel to the second semiconductor device, and a length of the hard portion in a direction perpendicular to a bend line of the flexible portion is equal to a thickness of a bottom surface of the electronic component in the direction.
Abstract:
A semiconductor-device mounting structure includes a first semiconductor device and a plate-shaped second semiconductor device connected to the first semiconductor device. The first semiconductor device includes a flexible board, an electronic component, and a sealing resin. The flexible board includes a bendable flexible portion and a hard portion. The flexible portion is bent at a boundary with the hard portion, along a shape of the electronic component such that the flexible board covers the electronic component. The flexible board and the electronic component are sealed with the sealing resin. The first semiconductor device is provided vertical to the second semiconductor device such that the hard portion is provided parallel to the second semiconductor device.
Abstract:
A chip fabricated from a semiconductor material is disclosed, which may include active devices located below a first depth from the chip back side, and a structure to remove heat from the active devices to the chip back side. The structure may include thermally conductive partial vias (TCPVs), which may include a recess with a depth, from the chip back side towards the active devices less than the first depth. Each TCPV may include a barrier layer deposited within the recess and deposited upon the back side of the chip. Each TCPV may also include a thermally conductive layer deposited upon the barrier layer. The structure may also include through-silicon vias (TSVs) electrically connected to active devices, extending from the back side to an active device side of the chip to conductively remove heat from the active devices to the back side of the chip.
Abstract:
A composite wafer includes a molded wafer and a second wafer. The molded wafer includes a plurality of first components, and the second wafer includes a plurality of second components. The second wafer is combined with the molded wafer to form the composite wafer. At least one of the first components is aligned with at least one of the second components to form a multi-component element. The multi-component element is singulatable from the composite wafer.
Abstract:
The invention concerns a process for the production of a circuit carrier (1) equipped with at least one surface-mount LED (SMD-LED), wherein the at least one SMD-LED (2) is positioned in oriented relationship to one or more reference points (3) of the circuit carrier (1) on the circuit carrier (1), wherein the position of a light-emitting region (4) of the at least one SMD-LED (2) is optically detected in the SMD-LED (2) and the at least one SMD-LED (2) is mounted to the circuit carrier (1) in dependence on the detected position of the light-emitting region (4) of the at least one SMD-LED (2), and such a circuit carrier (1).
Abstract:
A method for wafer bonding includes measuring grid distortion for a mated pairing of wafers to be bonded to determine if misalignment exists between the wafers. During processing of subsequent wafers, magnification of one or more lithographic patterns is adjusted to account for the misalignment. The subsequent wafers are bonded with reduced misalignment.
Abstract:
A semiconductor device includes a semiconductor element; a pad electrode that is formed on the semiconductor element; an alignment mark that is formed on the semiconductor element; a connection electrode that is formed on the pad electrode; and an underfill resin that is formed to cover the connection electrode. The height of the alignment mark from the semiconductor element is greater than that of the connection electrode.
Abstract:
A method for bonding first and second wafers by molecular adhesion. The method includes placing the wafers in an environment having a first pressure (P1) greater than a predetermined threshold pressure above which initiation of bonding wave propagation is prevented, bringing the first wafer and the second wafer into alignment and contact, and spontaneously initiating the propagation of a bonding wave between the wafers after they are in contact solely by reducing the pressure within the environment to a second pressure (P2) below the threshold pressure.
Abstract:
A semiconductor-device mounting structure includes a first semiconductor device and a plate-shaped second semiconductor device connected to the first semiconductor device. The first semiconductor device includes a flexible board, an electronic component, and a sealing resin. The flexible board includes a bendable flexible portion and a hard portion. The flexible portion is bent at a boundary with the hard portion, along a shape of the electronic component such that the flexible board covers the electronic component. The flexible board and the electronic component are sealed with the sealing resin. The first semiconductor device is provided vertical to the second semiconductor device such that the hard portion is provided parallel to the second semiconductor device.
Abstract:
A composite wafer includes a molded wafer and a second wafer. The molded wafer includes a plurality of first components, and the second wafer includes a plurality of second components. The second wafer is combined with the molded wafer to form the composite wafer. At least one of the first components is aligned with at least one of the second components to form a multi-component element. The multi-component element is singulatable from the composite wafer.