Particle Optical System
    81.
    发明申请
    Particle Optical System 有权
    粒子光学系统

    公开(公告)号:US20150069235A1

    公开(公告)日:2015-03-12

    申请号:US14481823

    申请日:2014-09-09

    Abstract: A particle optical system comprises a beam generating system (3) configured to generate a plurality of particle beams (5) and to direct the plurality of particle beams (5) onto an object plane (7), a first deflector arrangement (35) arranged in the beam path of the particle beams (5) upstream of the object plane (7) and configured to deflect the plurality of particle beams (5) before they are incident on the object plane (7), an object holder (15) configured to hold an object (17) to be inspected in the object plane (7), a plurality of detectors (27) configured to receive and to detect the plurality of particle beams (5) having traversed the object plane (7), wherein the detectors are arranged in a detection plane (21) on a side of the object plane (7) opposite to the beam generating system (3), at least one first particle optical lens (19) configured to collect particles of the particle beams emanating from the object plane on the detectors (27), and a controller (31) configured to control the first deflector arrangement (35) in order to deflect locations of incidence (9) of the particle beams (5) on the object plane (7) by deflecting the particle beams (5).

    Abstract translation: 粒子光学系统包括:束生成系统(3),其被配置为产生多个粒子束(5)并将多个粒子束(5)引导到物平面(7)上;第一偏转器装置(35)被布置 在物体平面(7)上游的粒子束(5)的光束路径中,并且被配置为在多个粒子束(5)入射到物体平面(7)之前使多个粒子束(5)偏转,配置有物体保持器 为了保持在物体平面(7)中被检查的物体(17),被配置为接收和检测已经穿过物体平面(7)的多个粒子束(5)的多个检测器(27),其中, 检测器被布置在物镜平面(7)与光束产生系统(3)相对的一侧的检测平面(21)中,至少一个第一粒子光学透镜(19)被配置为收集从 检测器(27)上的物体平面,以及配置成共用的控制器(31) 控制第一偏转器装置(35),以通过偏转粒子束(5)来偏转物体平面(7)上的粒子束(5)的入射(9)的位置。

    Gas Field Ionization Ion Source and Ion Beam Apparatus
    82.
    发明申请
    Gas Field Ionization Ion Source and Ion Beam Apparatus 有权
    气体离子源和离子束装置

    公开(公告)号:US20150041650A1

    公开(公告)日:2015-02-12

    申请号:US14390071

    申请日:2013-03-11

    Abstract: In the case of a conventional gas field ionization ion source, it was not possible to carry out an analysis with a high S/N ratio and a high-speed machining process because the current amount of an ion beam is small. In view of these problems, the present invention has been devised, and its object is to obtain a large ion beam current, while suppressing a probability of damaging an emitter electrode. The present invention is characterized by a process in which an ion beam is emitted at least in two operation states including a first operation state in which, when a first extraction voltage is applied, with the gas pressure being set to a first gas pressure, ions are emitted from a first ion emission region at the apex of the emitter electrode, and a second operation state in which, when a second extraction voltage that is higher than the first extraction voltage is applied, with the gas pressure being set to a second gas pressure that is higher than the first gas pressure, ions are emitted from a second ion emission region that is larger than the first ion emission region.

    Abstract translation: 在常规气田电离离子源的情况下,由于离子束的电流量小,所以不可能以高S / N比和高速加工工艺进行分析。 鉴于这些问题,本发明的目的是为了获得大的离子束电流,同时抑制发射电极损坏的可能性。 本发明的特征在于,其中离子束至少在两种操作状态下发射的过程,包括第一操作状态,其中当施加第一提取电压时,将气体压力设置为第一气体压力,离子 从发射电极的顶点处的第一离子发射区域发射;以及第二操作状态,其中当施加高于第一提取电压的第二提取电压时,将气体压力设定为第二气体 高于第一气体压力的压力,从大于第一离子发射区域的第二离子发射区域发射离子。

    Charged-particle microscope
    83.
    发明授权
    Charged-particle microscope 有权
    带电粒子显微镜

    公开(公告)号:US08859962B2

    公开(公告)日:2014-10-14

    申请号:US14215209

    申请日:2014-03-17

    Abstract: A charged-particle-beam device is characterized in having a control value for an aligner coil (29) being determined by: a coil current and an electrode applied-voltage at a control value for objectives (30, 31), which is an electromagnetic-field superposition lens; a control value for image-shift coils (27, 28); and the acceleration voltage of the charged-particle-beam. By doing this, it has become possible to avoid image disturbances that occur on images to be displayed at boundaries between charged areas and non-charged areas, and provide a charged-particle-beam device that obtains clear images without any unevenness in brightness.

    Abstract translation: 带电粒子束装置的特征在于具有对准线圈(29)的控制值,通过以下方式确定:线圈电流和用于物镜(30,31)的控制值的电极施加电压,其为电磁 场叠加透镜; 图像转换线圈(27,28)的控制值; 和带电粒子束的加速电压。 通过这样做,可以避免在充电区域和非充电区域之间的边界处显示图像上出现的图像干扰,并且提供获得清晰图像而没有任何亮度不均匀的带电粒子束装置。

    PARTICLE BEAM DEVICE AND METHOD FOR OPERATING A PARTICLE BEAM DEVICE
    85.
    发明申请
    PARTICLE BEAM DEVICE AND METHOD FOR OPERATING A PARTICLE BEAM DEVICE 有权
    粒子束装置和操作粒子束装置的方法

    公开(公告)号:US20140070097A1

    公开(公告)日:2014-03-13

    申请号:US14019887

    申请日:2013-09-06

    Inventor: Michael Albiez

    Abstract: A particle beam device, in particular an electron beam device, is provided having a beam generator for generating a primary particle beam, an objective lens for focusing the primary particle beam onto an object, and a detector for detecting particles emitted by the object. The objective lens has at least one magnetic unit, with the magnetic unit generating at least one first crossover and at least one second crossover. The first crossover is arranged in the objective lens or in a region between the objective lens and the object. The second crossover is arranged at the object. The device permits the examination of the object using particles which have a low energy, with good imaging properties. A method for operating the particle beam device is also provided.

    Abstract translation: 提供了一种粒子束装置,特别是电子束装置,其具有用于产生一次粒子束的束发生器,用于将一次粒子束聚焦到物体上的物镜和用于检测物体发射的粒子的检测器。 物镜具有至少一个磁性单元,磁性单元产生至少一个第一交叉和至少一个第二交叉。 第一分频器布置在物镜中或物镜与物体之间的区域中。 第二个交叉排列在物体上。 该装置允许使用具有低能量,具有良好成像性能的粒子来检查物体。 还提供了一种操作粒子束装置的方法。

    SCANNING ELECTRON MICROSCOPE AND LENGTH MEASURING METHOD USING THE SAME
    88.
    发明申请
    SCANNING ELECTRON MICROSCOPE AND LENGTH MEASURING METHOD USING THE SAME 审中-公开
    扫描电子显微镜和使用该扫描电子显微镜的长度测量方法

    公开(公告)号:US20130292568A1

    公开(公告)日:2013-11-07

    申请号:US13993829

    申请日:2011-12-05

    Abstract: This electron scanning microscope comprises an electron source (102), electron optical systems (109, 110, 111) for exposing a sample (113) to primary electron beams (138), an electron detector (127) for detecting signal electrons (139) emitted from the sample, and a deceleration electrical field-type energy filter (108). The deceleration electrical field-type energy filter has a conductor thin film (304) for distinguishing the energy of signal electrons. With this configuration, it is possible to realize a scanning electron microscope having a deceleration electrical field-type energy filter with which high energy resolution is obtained, even in a case where the scanning electron microscope has a retarding optical system.

    Abstract translation: 该电子扫描显微镜包括用于将样品(113)暴露于一次电子束(138)的电子源(102),用于检测信号电子(139)的电子检测器(127)的电子光学系统(109,110,111) 从所述样品发射的减速电场型能量过滤器(108)。 减速电场型能量滤波器具有用于区分信号电子能量的导体薄膜(304)。 利用这种结构,即使在扫描电子显微镜具有延迟光学系统的情况下,也可以实现具有能够获得高能量分辨率的减速电场型能量过滤器的扫描电子显微镜。

    Transmission Electron Microscope
    89.
    发明申请
    Transmission Electron Microscope 有权
    透射电子显微镜

    公开(公告)号:US20130206987A1

    公开(公告)日:2013-08-15

    申请号:US13757939

    申请日:2013-02-04

    Applicant: JEOL LTD.

    Inventor: Kazuya Omoto

    Abstract: A transmission electron microscope (100) includes an electron beam source (2), an illumination lens (10), an objective lens (20), an intermediate lens system (30), a pair of transfer lenses (40) located behind the intermediate lens system (30), and an energy filter (60) for separating the electrons of the beam L transmitted through the specimen (S) according to energy. The transfer lenses (40) transfer the first image to the entrance crossover plane (S1) of the energy filter (60) and to transfer the second image to the entrance image plane (A1) of the filter (60). An image plane (A3) is formed between the first transfer lens (40a) and the second transfer lens (40b).

    Abstract translation: 透射电子显微镜(100)包括电子束源(2),照明透镜(10),物镜(20),中间透镜系统(30),位于中间的后面的一对转印透镜 透镜系统(30)和能量过滤器(60),用于根据能量分离透过样本(S)的光束L的电子。 传送透镜(40)将第一图像传送到能量过滤器(60)的入口交叉平面(S1),并将第二图像传送到过滤器(60)的入射图像平面(A1)。 在第一转印透镜(40a)和第二转印透镜(40b)之间形成像平面(A3)。

    Projection lens arrangement
    90.
    发明授权
    Projection lens arrangement 有权
    投影镜头布置

    公开(公告)号:US08445869B2

    公开(公告)日:2013-05-21

    申请号:US12905126

    申请日:2010-10-15

    Abstract: The invention relates to a charged particle multi-beamlet system for exposing a target using a plurality of beamlets. The system has a charged particle source, an aperture array, a beamlet manipulator, a beamlet blanker, and an array of projection lens systems. The charged particle source is configured to generate a charged particle beam. The aperture array is configured to define separate beamlets from the generated beam. The beamlet manipulator is configured to converge groups of the beamlets towards a common point of convergence for each group. The beamlet blanker is configured to controllably blank beamlets in the groups of beamlets. Finally, the array of projection lens systems is configured to project unblanked beamlets of the groups of beamlets on to the surface of the target. The beamlet manipulator is further adapted to converge each of the groups of beamlets towards a point corresponding to one of the projection lens systems.

    Abstract translation: 本发明涉及一种用于使用多个子束曝光目标的带电粒子多子束系统。 该系统具有带电粒子源,孔径阵列,子束操纵器,子束消除器和投影透镜系统阵列。 带电粒子源被配置为产生带电粒子束。 孔径阵列被配置为从所产生的光束定义单独的子束。 子束操纵器被配置为将每个子束的组合朝向每个组的公共收敛点收敛。 子束消除器被配置为可控地遮挡子束组中的子束。 最后,投影透镜系统的阵列被配置成将子束组的未平坦的子束投影到目标的表面上。 子束操纵器还适于将每个子束组朝向对应于投影透镜系统中的一个的点聚焦。

Patent Agency Ranking