Abstract:
An electron-optical arrangement provides a primary beam path for a beam of primary electrons and a secondary beam path for secondary electrons. The electron-optical arrangement includes a magnet arrangement having first, second and third magnetic field regions. The first magnetic field region is traversed by the primary beam path and the secondary beam path. The second magnetic field region is arranged in the primary beam path upstream of the first magnetic field region and is not traversed by the secondary beam path. The first and second magnetic field regions deflect the primary beam path in substantially opposite directions. The third magnetic field region is arranged in the secondary beam path downstream of the first magnetic field region and is not traversed by the first beam path. The first and third magnetic field regions deflect the secondary beam path in a substantially same direction.
Abstract:
An examining system for imaging an object positionable in an object plane, includes an illumination device for supplying energy to a delimited field of the object such that charged particles emerge from locations of the field, the field being displaceable in the plane of the object, a first deflector for providing a variable deflection field for guiding charged particles emerging from locations of a selectable region of the object through a fixed, predetermined beam cross-section, and a position-sensitive detector disposed in the beam path such that the charged particles, after having passed through the first deflector, impinge on the position-sensitive detector, wherein particles emerging from different locations of the region are imaged on different locations of the position-sensitive detector which are allocated to the locations of emergence.
Abstract:
A method and apparatus for the repair of photolithography masks, wherein a photolithography mask is examined for the presence of defects and a list of the defects is generated, in which at least one type of defect, its extent, and its location on the photolithography mask is assigned to each defect, and these defects are repaired.
Abstract:
The invention relates to a method for repairing phase shift masks for photolithography in which a phase shift mask is checked for the presence of defects and, if defects are present, (i) an analysis is conducted as to which of the defects negatively affect imaging properties of the phase shift mask, (ii) said defects are improved, (iii) the imaging properties of the improved phase shift mask are analyzed and the maintenance of a predetermined tolerance criterion is checked, and (iv) the two preceding steps (ii) and (iii) are optionally repeated multiple times if the imaging properties do not meet the predetermined tolerance criterion. In such a method, the imaging properties are analyzed in that, for each defect to be improved, a test variable is determined for the defect as a function of focus and illumination, and at least one additional non-defective point on the phase shift mask in the immediate vicinity of the defect is determined, and a minimum allowable deviation between the test variable for the defect and the non-defective point is predetermined as the tolerance criterion.
Abstract:
A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical to element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first regularity.
Abstract:
The invention relates to a method for analyzing a group of at least two masks for photolithography, wherein each of the masks comprises a substructure of a total structure, which is to be introduced in a layer of the wafer in the lithographic process, and the total structure is introduced in the layer of the wafer by introducing the substructures in sequence. In this method, a first aerial image of a first one of the at least two masks is recorded, digitized and stored in a data structure. Then, a second aerial image of a second one of the at least two masks is recorded, digitized and stored in a data structure. A combination image is generated from the data of the first and second aerial images, which combination image is represented and/or evaluated.
Abstract:
A method and apparatus for the repair of photolithography masks, wherein a photolithography mask is examined for the presence of defects and a list of the defects is generated, in which at least one type of defect, its extent, and its location on the photolithography mask is assigned to each defect, and these defects are repaired.
Abstract:
A particle-optical apparatus is proposed which comprises a particle-optical lens for deflecting a plurality of separate beam-charged particles which is provided by a plurality of finger electrodes provided along an opening of the lens.
Abstract:
A particle-optical apparatus for changing trajectories of charged particles of a divergent particle beam oriented along a longitudinal axis is proposed, comprising: an inner electrode arrangement which is at least partially transparent for the particles, engages at least partially around the longitudinal axis with a radial distance and extends along the longitudinal axis, an outer electrode arrangement which engages at least partially around the inner electrode arrangement with a radial distance and extends along the longitudinal axis, and a voltage source for providing a potential difference between the inner and the outer electrode arrangements, wherein the voltage source provides such a potential difference that a kinetic component of a particle traversing the inner electrode arrangement is reversible, said kinetic component being oriented orthogonally to the longitudinal axis. Moreover, an illumination system and an imaging system as well as a manufacturing method employing said particle-apparatus are proposed.
Abstract:
A projection apparatus for imaging a pattern of a mask onto a substrate by means of a beam of projected charged particles is disclosed. The apparatus includes a radiation sensitive layer. The apparatus also includes a mask. The mask includes a membrane layer made of a first material, scattering regions forming the pattern and made of a second material scattering the charged particles more than the membrane layer, and a plurality of straightly extending supporting struts spaced apart from one another and supporting the membrane layer together with the scattering regions. The apparatus also includes a projection apparatus. The projection apparatus includes a beam shaping device for producing the projection beam with a predetermined projection beam cross-section in the mask plane, and a positioning device for moving the projection beam cross-section in the mask plane along a predetermined path over the mask parallel to the direction into which the struts extend. The apparatus also includes a sensor for supplying a measuring signal which is dependent on the number of charged particles impinging on a mark region provided on the mask.