Abstract:
An embodiment bump on trace (BOT) structure includes a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal bump on the under bump metallurgy feature, and a substrate trace on a substrate, the substrate trace coupled to the metal bump through a solder joint and intermetallic compounds, a ratio of a first cross sectional area of the intermetallic compounds to a second cross sectional area of the solder joint greater than forty percent.
Abstract:
Methods and apparatuses for a attaching a first substrate to a second substrate are provided. In some embodiments, a first substrate has a protective layer, such as a solder mask, around a die attach area, at which a second substrate is attached. A keep-out region (e.g., an area between the second substrate and the protective layer) is a region around the second substrate in which the protective layer is not formed or removed. The keep-out region is sized such that a sufficient gap exists between the second substrate and the protective layer to place an underfill between the first substrate and the second substrate while reducing or preventing voids and while allowing traces in the keep-out region to be covered by the underfill.
Abstract:
A method includes placing a plurality of bottom units onto a jig, wherein the plurality of bottom units is not sawed apart and forms an integrated component. Each of the plurality of bottom units includes a package substrate and a die bonded to the package substrate. A plurality of upper component stacks is placed onto the plurality of bottom units, wherein solder balls are located between the plurality of upper component and the plurality of bottom units. A reflow is performed to join the plurality of upper component stacks with respective ones of the plurality of bottom units through the solder balls.
Abstract:
Methods and apparatus for package on package structures having stud bump through via interconnections. A structure includes an interconnect layer having a plurality of through via assemblies each including at least one stud bump are formed on conductive pads; and encapsulant surrounding the through via assembly, a first redistribution layer formed over a surface of the encapsulant and coupled to the through via assemblies and carrying connectors, and a second redistribution layer over interconnect layer at the other end of the through via assemblies, the through via assemblies extending vertically through the interconnect layer. In an embodiment the interconnect layer is mounted using the connectors to a lower package substrate to form a package on package structure. A first integrated circuit device may be mounted on the second redistribution layer of the interconnect layer. Methods for forming the interconnect layer and the package on package structures are disclosed.
Abstract:
A component package and a method of forming are provided. A first component package may include a first semiconductor device having a pair of interposers attached thereto on opposing sides of the first semiconductor device. Each interposer may include conductive traces formed therein to provide electrical coupling to conductive features formed on the surfaces of the respective interposers. A plurality of through vias may provide for electrically connecting the interposers to one another. A first interposer may provide for electrical connections to a printed circuit board or subsequent semiconductor device. A second interposer may provide for electrical connections to a second semiconductor device and a second component package. The first and second component packages may be combined to form a Package-on-Package (“PoP”) structure.
Abstract:
A device includes a work piece including a metal bump; and a dielectric layer having a portion directly over the metal bump. The metal bump and a surface of the portion of the dielectric layer form an interface. A metal finish is formed over and contacting the metal bump. The metal finish extends from over the dielectric layer to below the interface.
Abstract:
Methods and apparatuses for a attaching a first substrate to a second substrate are provided. In some embodiments, a first substrate has a protective layer, such as a solder mask, around a die attach area, at which a second substrate is attached. A keep-out region (e.g., an area between the second substrate and the protective layer) is a region around the second substrate in which the protective layer is not formed or removed. The keep-out region is sized such that a sufficient gap exists between the second substrate and the protective layer to place an underfill between the first substrate and the second substrate while reducing or preventing voids and while allowing traces in the keep-out region to be covered by the underfill.
Abstract:
A device includes a substrate, a metal pad over the substrate, and a metal trace electrically disconnected from the metal pad. The metal pad and the metal trace are level with each other. A passivation layer includes a portion overlapping an edge portion of the metal pad. A metal pillar is overlying the metal pad, and is electrically connected to the metal pad. The metal trace has a portion overlapped by the metal pillar.
Abstract:
Methods and apparatus are disclosed for a package or a package-on-package (PoP) device. An IC package or a PoP device may comprise an electrical path connecting a die and a decoupling capacitor, wherein the electrical path may have a width in a range from about 8 um to about 44 um and a length in a range from about 10 um to about 650 um. The decoupling capacitor and the die may be contained in a same package, or at different packages within a PoP device, connected by contact pads, redistribution layers (RDLs), and connectors.
Abstract:
Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices are disclosed. In one embodiment, a semiconductor device includes a substrate and conductive traces disposed over the substrate. Each of the conductive traces has a bottom region proximate the substrate and a top region opposite the bottom region. The top region has a first width and the bottom region has a second width. The second width is greater than the first width.