Abstract:
A semiconductor device allowing a mounting of a semiconductor substrate with narrow electrode pad interval on an insulated circuit board while securing a favorable insulation characteristic and a manufacturing method thereof are obtained. The semiconductor device includes an electrode pad formed on a semiconductor substrate; a connecting underlying metal film connected to the electrode pad; a connecting conductor establishing electrical conduction between the connecting underlying metal film and a terminal electrode on an insulated circuit board; and non-conductive resin surrounding the connecting conductor and filling a gap between the substrate and the insulated circuit board. Here, the connecting underlying metal film is not covered by the connecting conductor at least in a peripheral region including an outer peripheral portion thereof
Abstract:
Bonding pads are formed on a main surface of a semiconductor chip. An insulating layer having openings located on the bonding pads is formed on the main surface of the semiconductor chip. Base metal layers are formed on the bonding pads. A buffer coat film having a portion laid on a periphery of the base metal layer is formed on the insulating layer. Connection layers are formed on the base metal layers. First conductors are formed on the connection layers. A seal resin exposing only top surfaces of the first conductors is formed. Lumpish second conductors are formed on the top surfaces of the first conductor. Thereby, a resin seal semiconductor package can be made compact and it has improved electrical characteristics and high reliability.
Abstract:
An infrared radiation detector so adapted as to prevent the image signals from deteriorating due to the short length of leads extending within the cryogenic container with the infrared radiation sensing element accommodated within and to correspond to the increasing number of the leads and terminals, associated with a high density of elements. The infrared radiation detector is composed of an inner cylinder and an outer cylinder. The outer cylinder is disposed so as to lie in the same plane as the sub-package on which the multi-layered ceramic lead plate composed of a plurality of bonding pads for wire bonding, internally embedded lead layers, and plug-in terminals for fetching signals is mounted. The bonding pad of the sub-package is bonded to the bonding pad of the ceramic lead plate through a wire bonding.
Abstract:
First, a low-concentration impurity layer is formed by obliquely implanting an n-type impurity at a prescribed angle with respect to the surface of a p-type semiconductor substrate, using a gate electrode formed on the semiconductor substrate as a mask. Thereafter a sidewall spacer is formed on the sidewall of the gate electrode, and then a medium-concentration impurity layer is formed by obliquely implanting an n-type impurity to the surface of the semiconductor substrate. Thereafter a high-concentration impurity layer is formed by substantially perpendicularly implanting an n-type impurity with respect to the surface of the semiconductor substrate. According to this method, the low-concentration impurity layer in source and drain regions having triple diffusion structures can be accurately overlapped with the gate electrode, with no requirement for heat treatment for thermal diffusion.
Abstract:
A lead frame includes a die pad for mounting thereon a semiconductor chip having a plurality of electrodes, a plurality of leads for electrical connection with the plurality of electrodes of the semiconductor chip, an outer frame disposed on the periphery of the die pad for supporting the die pad and the plurality of leads, and a resin guide portion extending to the vicinity of the die pad from the outer frame for guiding molten resin over and under the semiconductor chip during resin packaging. A semiconductor device manufacturing method includes mounting a semiconductor chip having electrodes on a substrate having a resin guiding portion for guiding a resin over and under the semiconductor chip during resin packaging; electrically connecting leads on the substrate to the electrodes; positioning the semiconductor chip and the substrate between a pair of mold halves injecting a molten resin into the mold to fill the cavity; and solidifying the resin.
Abstract:
To improve reliability of a semiconductor device in which wire bonding using a wire made of copper is performed. A semiconductor device is configured so that one of end parts (wide width part) of a copper wire is joined via a bump on a pad (electrode pad) formed over a main surface (first main surface) of a semiconductor chip of the semiconductor device. The bump is made of gold, which is a metal material having a hardness lower than that of copper, and the width of the bump is narrower than the width of the wide width part of the wire.
Abstract:
A semiconductor device has a first semiconductor chip 2a, a wiring substrate 1 connected to the first semiconductor chip 2a, a first surrounding substrate 6a which has an opening at a position avoiding the first semiconductor chip 2a and which is connected onto the wiring substrate 1 by flip-chip bonding, and a second semiconductor chip 2b connected onto the first surrounding substrate 2a by flip-chip bonding. A second surrounding substrate 6b comprising a two or more number of substrate elements is used for the first surrounding substrate 6a.
Abstract:
A conductive resist film is used as a mask in ion implantation. A portion of the conductive resist film is electrically connected to a semiconductor substrate. The charge of ions which enter the conductive resist film in ion implantation flows into the semiconductor substrate and dissipates therein.