Abstract:
A method for forming a semiconductor device structure is provided. The method includes forming a metal gate stack over a semiconductor substrate. The method also includes performing a hydrogen-containing plasma treatment on the metal gate stack to modify a surface of the metal gate stack. The hydrogen-containing plasma treatment includes exciting a gas mixture including a first hydrogen-containing gas and a second hydrogen-containing gas to generate a hydrogen-containing plasma.
Abstract:
Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a semiconductor substrate. The semiconductor device also includes an isolation structure in the semiconductor substrate and surrounding an active region of the semiconductor substrate. The semiconductor device includes a gate over the semiconductor substrate. The gate has an intermediate portion over the active region and two end portions connected to the intermediate portion. Each of the end portions has a first gate length longer than a second gate length of the intermediate portion and is located over the isolation structure.
Abstract:
The present disclosure relates to a method of forming a transistor device having a channel region comprising a sandwich film stack with a plurality of different layers that improve device performance, and an associated apparatus. In some embodiments, the method is performed by selectively etching a semiconductor substrate to form a recess along a top surface of the semiconductor substrate. A sandwich film stack having a plurality of nested layers is formed within the recess. At least two of the nested layers include different materials that improve different aspects of the performance of the transistor device. A gate structure is formed over the sandwich film stack. The gate structure controls the flow of charge carriers in a channel region having the sandwich film stack, which is laterally positioned between a source region and a drain region disposed within the semiconductor substrate.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a substrate and a gate structure over the substrate. The semiconductor device structure also includes a source/drain feature in the substrate, protruding from the substrate, and on a sidewall surface of the gate structure. The semiconductor device structure also includes an insulating barrier structure in the substrate and partially covering the bottom and sidewalls of the source/drain feature.
Abstract:
A semiconductor device and a method of fabricating the semiconductor device are provided. The semiconductor device includes a substrate; a source/drain region having a first dopant in the substrate; a barrier layer having a second dopant formed around the source/drain region in the substrate. When a semiconductor device is scaled down, the doped profile in source/drain regions might affect the threshold voltage uniformity, the provided semiconductor device may improve the threshold voltage uniformity by the barrier layer to control the doped profile.
Abstract:
The present disclosure relates to a method of forming a transistor device having a channel region comprising a sandwich film stack with a plurality of different layers that improve device performance, and an associated apparatus. In some embodiments, the method is performed by selectively etching a semiconductor substrate to form a recess along a top surface of the semiconductor substrate. A sandwich film stack having a plurality of nested layers is formed within the recess. At least two of the nested layers include different materials that improve different aspects of the performance of the transistor device. A gate structure is formed over the sandwich film stack. The gate structure controls the flow of charge carriers in a channel region having the sandwich film stack, which is laterally positioned between a source region and a drain region disposed within the semiconductor substrate.
Abstract:
A semiconductor device includes a semiconductor substrate, an active region and a trench isolation. The active region is formed in the semiconductor substrate. The trench isolation is disposed adjacent to the active region. The trench isolation includes a lower portion and an upper portion. The upper portion is located on the lower portion. The upper portion has a width gradually decreased from a junction between the upper portion and the lower portion toward a top of the trench isolation. In a method for fabricating the semiconductor device, at first, the semiconductor substrate is etched to form a trench in the semiconductor substrate. Then, an insulator fills the trench to form the trench isolation. Thereafter, the gate structure is formed on the semiconductor substrate. Then, the semiconductor substrate is etched to form a recess adjacent to the trench isolation. Thereafter, at least one doped epitaxial layer grows in the recess.
Abstract:
A semiconductor device includes: first and second fin structures, disposed on a substrate, that respectively extend in parallel to an axis; a first gate feature that traverses the first fin structure to overlay a central portion of the first fin structure; a second gate feature that traverses the second fin structure to overlay a central portion of the second fin structure; a first spacer comprising: a first portion comprising two layers that respectively extend from sidewalls of the first gate feature toward opposite directions of the axis; and a second portion comprising two layers that respectively extend from sidewalls of the first portion of the first spacer toward the opposite directions of the axis; and a second spacer comprising two layers that respectively extend from sidewalls of the second gate feature toward the opposite directions of the axis.
Abstract:
Semiconductor devices and methods of forming the same are disclosed. A semiconductor device includes a substrate, a gate structure over the substrate, a spacer and a source/drain region. The gate structure is disposed over the substrate. The spacer is disposed on a sidewall of the gate structure, wherein the spacer has a top surface lower than a top surface of the gate structure. The source/drain region is disposed adjacent to a sidewall of the spacer.
Abstract:
The present disclosure relates to a transistor device having a channel region comprising a sandwich film stack with a plurality of different layers that improve device performance, and an associated apparatus. In some embodiments, the transistor device has a source region and a drain region disposed within a semiconductor substrate. A sandwich film stack is laterally positioned between the source region and the drain region. The sandwich film stack has a lower layer, a middle layer of a carbon doped semiconductor material disposed over the lower layer, and an upper layer disposed over the middle layer. A gate structure is disposed over the sandwich film stack. The gate structure is configured to control a flow of charge carriers in a channel region located between the source region and the drain region.