Abstract:
A semiconductor device includes a semiconductor substrate, an active region and a trench isolation. The active region is formed in the semiconductor substrate. The trench isolation is disposed adjacent to the active region. The trench isolation includes a lower portion and an upper portion. The upper portion is located on the lower portion. The upper portion has a width gradually decreased from a junction between the upper portion and the lower portion toward a top of the trench isolation. In a method for fabricating the semiconductor device, at first, the semiconductor substrate is etched to form a trench in the semiconductor substrate. Then, an insulator fills the trench to form the trench isolation. Thereafter, the gate structure is formed on the semiconductor substrate. Then, the semiconductor substrate is etched to form a recess adjacent to the trench isolation. Thereafter, at least one doped epitaxial layer grows in the recess.
Abstract:
A semiconductor device includes a substrate, an epi-layer, an etch stop layer, an interlayer dielectric (ILD) layer, a silicide layer cap and a contact plug. The substrate has a first portion and a second portion neighboring to the first portion. The etch stop layer is disposed on the second portion. The ILD layer is disposed on the etch stop layer. The silicide cap is disposed on the epi-layer. The contact plug is disposed on the silicide cap and surrounded by the ILD layer.
Abstract:
The present disclosure relates a back-end-of-the-line (BEOL) metallization stack having an air gap disposed between adjacent metal interconnect features, which provides for an inter-level dielectric material with a low dielectric constant. In some embodiments, the BEOL metallization stack has an inter-level dielectric (ILD) layer disposed over a substrate. A metal interconnect layer is disposed within the ILD layer, and an air gap is arranged disposed within the ILD layer at a position between a first feature and a second feature of the metal interconnect layer. The air gap has an upper surface with a first curve that meets a second curve at a peak arranged below a top of the metal interconnect layer. The first curve becomes steeper as a distance from the peak decreases and the second curve becomes steeper as a distance from the peak decreases.
Abstract:
The present disclosure relates a method of forming a back-end-of-the-line (BEOL) metallization layer having an air gap disposed between adjacent metal interconnect features, which provides for an inter-level dielectric material with a low dielectric constant, and an associated apparatus. In some embodiments, the method is performed by forming a metal interconnect layer within a sacrificial dielectric layer overlying a substrate. The sacrificial dielectric layer is removed to form a recess extending between first and second features of the metal interconnect layer. A protective liner is formed onto the sidewalls and bottom surface of the recess, and then a re-distributed ILD layer is deposited within the recess in a manner that forms an air gap at a position between the first and second features of the metal interconnect layer. The air gap reduces the dielectric constant between the first and second features of the metal interconnect layer.
Abstract:
As will be appreciated in more detail herein, the present disclosure provides for FinFET techniques whereby a FinFET channel region has a particular orientation with respect to the crystalline lattice of the semiconductor device to provide enhanced mobility, compared to conventional FinFETs. In particular, the present disclosure provides FinFETs with a channel region whose lattice includes silicon atoms arranged on (551) lattice plane. In this configuration, the sidewalls of the channel region are particularly smooth at the atomic level, which tends to promote higher carrier mobility and higher device performance than previously achievable.
Abstract:
A semiconductor device includes a semiconductor substrate, an active region and a trench isolation. The active region is formed in the semiconductor substrate. The trench isolation is disposed adjacent to the active region. The trench isolation includes a lower portion and an upper portion. The upper portion is located on the lower portion. The upper portion has a width gradually decreased from a junction between the upper portion and the lower portion toward a top of the trench isolation. In a method for fabricating the semiconductor device, at first, the semiconductor substrate is etched to form a trench in the semiconductor substrate. Then, an insulator fills the trench to form the trench isolation. Thereafter, the gate structure is formed on the semiconductor substrate. Then, the semiconductor substrate is etched to form a recess adjacent to the trench isolation. Thereafter, at least one doped epitaxial layer grows in the recess.
Abstract:
The present disclosure relates a back-end-of-the-line (BEOL) metallization stack having an air gap disposed between adjacent metal interconnect features, which provides for an inter-level dielectric material with a low dielectric constant. In some embodiments, the BEOL metallization stack has an inter-level dielectric (ILD) layer disposed over a substrate. A metal interconnect layer is disposed within the ILD layer, and an air gap is arranged disposed within the ILD layer at a position between a first feature and a second feature of the metal interconnect layer. The air gap has an upper surface with a first curve that meets a second curve at a peak arranged below a top of the metal interconnect layer. The first curve becomes steeper as a distance from the peak decreases and the second curve becomes steeper as a distance from the peak decreases.
Abstract:
As will be appreciated in more detail herein, the present disclosure provides for FinFET techniques whereby a FinFET channel region has a particular orientation with respect to the crystalline lattice of the semiconductor device to provide enhanced mobility, compared to conventional FinFETs. In particular, the present disclosure provides FinFETs with a channel region whose lattice includes silicon atoms arranged on (551) lattice plane. In this configuration, the sidewalls of the channel region are particularly smooth at the atomic level, which tends to promote higher carrier mobility and higher device performance than previously achievable.
Abstract:
A semiconductor device includes a substrate, an epi-layer, an etch stop layer, an interlayer dielectric (ILD) layer, a silicide layer cap and a contact plug. The substrate has a first portion and a second portion neighboring to the first portion. The etch stop layer is disposed on the second portion. The ILD layer is disposed on the etch stop layer. The silicide cap is disposed on the epi-layer. The contact plug is disposed on the silicide cap and surrounded by the ILD layer.
Abstract:
The present disclosure relates a method of forming a back-end-of-the-line (BEOL) metallization layer having an air gap disposed between adjacent metal interconnect features, which provides for an inter-level dielectric material with a low dielectric constant, and an associated apparatus. In some embodiments, the method is performed by forming a metal interconnect layer within a sacrificial dielectric layer overlying a substrate. The sacrificial dielectric layer is removed to form a recess extending between first and second features of the metal interconnect layer. A protective liner is formed onto the sidewalls and bottom surface of the recess, and then a re-distributed ILD layer is deposited within the recess in a manner that forms an air gap at a position between the first and second features of the metal interconnect layer. The air gap reduces the dielectric constant between the first and second features of the metal interconnect layer.