Abstract:
According to one embodiment, a device manufacturing apparatus includes a substrate holding portion holding a substrate; an ion source including a housing, an anode disposed in the housing, a cathode disposed outside the housing, and a first opening disposed in a portion of the housing such that the anode is exposed to a region between the anode and the substrate holding portion, the ion source configured to generate an ion beam with which the substrate is irradiated; and at least one first structure disposed between the ion source and the substrate holding portion, and having a first through hole through which the ion beam passes. The first structure includes a conductor, and an opening dimension of the first through hole is equal to or larger than an opening dimension of the first opening.
Abstract:
The present invention concerns a charged-particle multi-beamlet system that comprises a source of charged particles (301); a first multi-aperture plate (320) having plural apertures disposed in a charged particle beam path of the system downstream of the source; a first multi-aperture selector plate (313) having plural apertures; a carrier (340), wherein the first multi-aperture selector plate is mounted on the carrier; and an actuator (350) configured to move the carrier such that the first multi-aperture selector plate is disposed in the charged particle beam path of the system downstream of the source in a first mode of operation of the system, and such that the first multi-aperture selector plate is disposed outside of the charged particle beam path in a second mode of operation of the system. The source, the first multi-aperture plate and the carrier of the system are arranged such that a first number of charged particle beamlets is generated at a position downstream of both the first multi-aperture plate and the first multi-aperture selector plate in the first mode of operation, and that a second number of charged particle beamlets is generated at the position in the second mode of operation, wherein the first number of beamlets differs from the second number of beamlets.
Abstract:
A charged particle detection system comprises plural detection elements and a multi-aperture plate in proximity of the detection elements. Charged particle beamlets can traverse the apertures of the multi-aperture plate to be incident on the detection elements. More than one multi-aperture plate can be provided to form a stack of multi-aperture plates in proximity of the detector. A suitable electric potential supplied to the multi-aperture plate can have an energy filtering property for the plural charged particle beamlets traversing the apertures of the plate.
Abstract:
A method of performing spectroscopy in a Transmission Charged-Particle Microscope comprising: a specimen holder; a source, for producing a beam of charged particles; an illuminator, for directing said beam so as to irradiate the specimen; an imaging system, for directing a flux of charged particles transmitted through the specimen onto a spectroscopic apparatus comprising a dispersing device for dispersing said flux into an energy-resolved array of spectral sub-beams, the method comprising: using an adjustable aperture device to admit a first portion of said array to a detector, while blocking a second portion of said array; providing; using a radiation sensor in said flux upstream of said aperture device to perform localized radiation sensing in a selected region of said second portion of the array, simultaneous with detection of said first portion by said detector; using a sensing result from said sensor to adjust a detection result from said detector.
Abstract:
Positive ions that fly within an ion acceleration tube are accelerated by a plurality of acceleration electrodes arranged within the ion acceleration tube and are irradiated to an irradiation target. A plurality of magnet devices is arranged within the ion acceleration tube; the directions of the lines of magnetic force formed respectively by the magnet devices are made to differ between the adjacent magnet devices by an angle of more than 0 degree and at most 90 degrees or less; and each of the lines of magnetic force is rotated in one direction within the ion acceleration tube. Electrons travelling in reverse within the ion acceleration tube are made to intersect the lines of magnetic force, and made to increase a distance from a flying axis while traveling in reverse. Since the electrons collide with members within the ion acceleration tube and stop before having high energy, high-energy X-rays are not generated.
Abstract:
The present invention explains a charged-particle beam device for the purpose of highly accurately measuring electrostatic charge of a sample in a held state by an electrostatic chuck (105). In order to attain the object, according to the present invention, there is proposed a charged-particle beam device including an electrostatic chuck (105) for holding a sample on which a charged particle beam is irradiated and a sample chamber (102) in which the electrostatic chuck (105) is set. The charged-particle beam device includes a potential measuring device that measures potential on a side of an attraction surface for the sample of the electrostatic chuck (105) and a control device that performs potential measurement by the potential measuring device in a state in which the sample is attracted by the electrostatic chuck (105).
Abstract:
In a charged-particle multi-beam processing apparatus for exposure of a target with a plurality of parallel particle-optical columns, each column has a beam shaping device forming the shape of the illuminating beam into a desired pattern composed of a multitude of sub-beams, by means of an aperture array device, which defines the shape of a respective sub-beam by means of an array of apertures, and a deflection array device selectively deflecting sub-beams off their nominal paths; thus, only the non-selected sub-beams can reach the target. According to many embodiments of the invention each beam shaping device is provided with a first field-boundary device and a second field-boundary device, which are the first and last plate elements traversed by the beam. One of the first and second field-boundary devices defines a field-free space interval so as to accommodate feeding lines for controlling the deflection array device.
Abstract:
A transmission electron microscope (100) capable of reducing the effects of stray magnetic fields includes an electron beam source (2), an illumination lens system (4) for causing the electron beam to impinge on a sample (S), a sample stage (6) for holding the sample (S), a first objective lens (8), a second objective lens (10) disposed behind the first objective lens (8), an imaging lens system (16) disposed behind the second objective lens (10), and a controller (22) configured or programmed for controlling the first objective lens (8) and the second objective lens (10). The first objective lens (8) has upper and lower polepieces disposed on opposite sides of the sample (S). The upper and lower polepieces together produce a magnetic field. The controller (22) performs an operation for controlling the second objective lens (10) to construct a TEM (transmission electron microscope) image of the sample (S) out of the electron beam transmitted through the sample (S). Furthermore, the controller performs an operation for controlling the first objective lens (8) according to imaging conditions to produce a magnetic field that cancels out stray magnetic fields at the position where the sample (S) is placed.
Abstract:
A sample preparation apparatus (100) is used to prepare a cross section of a sample (S) by irradiating it with an ion beam. The apparatus (100) includes an ion beam generator (10), a shield plate (40) disposed to cover a part of the sample (S) to shield the sample (S) from the ion beam, and a controller (82) controlling the ion beam generator (10). The controller (82) controls performance of first and second operations. In the first operation, the ion beam is accelerated by a first accelerating voltage and hits the sample (S) while the sample (S) and the shield plate (40) are located in a given positional relationship. In the second operation, the ion beam is accelerated by a second accelerating voltage lower than the first accelerating voltage and hits the sample (S) while the given positional relationship is maintained.
Abstract:
A charged particle beam focusing apparatus includes a charged particle beam generator configured to project simultaneously at least one non-astigmatic charged particle beam and at least one astigmatic charged particle beam onto locations on a surface of a specimen, thereby causing released electrons to be emitted from the locations. The apparatus also includes an imaging detector configured to receive the released electrons from the locations and to form images of the locations from the released electrons. A processor analyzes the image produced by the at least one astigmatic charged particle beam and in response thereto adjusts a focus of the at least one non-astigmatic charged particle beam.