Abstract:
Systems, devices, methods, and techniques for energy-loss spectroscopy at relatively large energy losses are described. A charged particle microscope system can include a beam column section. The beam column section can include one or more charged particle optical elements calibrated for a first energy and one or more charged particle optical elements calibrated for a second energy. The charged particle microscope system can include a detector section. The detector section can be disposed at a position downstream of the beam column section. The detector section can include an electrostatic or magnetic prism and one or more charged particle optical elements calibrated for the second energy. The first energy and the second energy can be different.
Abstract:
The invention relates to a post-column filter (a PCF) for a (Scanning) Transmission Electron Microscope (a (S)TEM). Traditionally these filters use excitations of the optical elements before the slit plane that are identical in both the EFTEM and the EELS mode. Although this eases the task for the person skilled in the art of developing and tuning a PCF, as it reduces the number of degrees of freedom to a manageable amount. Inventors found ways to determine settings of the optical elements before the slit plane for EELS mode that are different from the EFTEM mode and where the performance of the PCF in EELS mode is improved (especially the relative energy range that can be imaged) without degrading the performance of the PCF in EFTEM mode.
Abstract:
A Transmission Charged-Particle Microscope includes an imaging system, for directing a flux of charged particles transmitted through the specimen onto a spectroscopic apparatus including: a dispersing device, for dispersing said flux into an energy-resolved array of spectral sub-beams propagating substantially parallel to a propagation axis; a detector; an adjustable aperture device for defining an aperture in a path of said array, so as to select a subset of said array to be admitted to the detector, which aperture is delimited in a dispersion direction perpendicular to said propagation axis by first and second opposed edges, each of which edges is independently positionable relative to said propagation axis, thereby allowing independent adjustment of both of: a width of said aperture parallel to said dispersion direction; and a position of a center of said aperture relative to said propagation axis.
Abstract:
A system of investigating aberrations in a charged-particle lens system, which lens system has an object space comprising an object plane and an image space comprising an image plane, includes: Selecting a fixed pivot point on said object plane; Directing a charged-particle beam through said pivot point, entrance pupil and lens system and onto said image plane, said beam having a relatively small cross-sectional area relative to the area of the entrance pupil; Changing the orientation of said beam through said pivot point, so as to trace out an entrance figure on said entrance pupil and a corresponding image figure on said image plane; Registering said image figure; Repeating this procedure at a series of different focus settings of the lens system, thus acquiring a set of registered image figures at different focus settings; Analyzing said set so as to derive lens aberrations therefrom.
Abstract:
The invention relates to a method of preparing and imaging a sample using a particle-optical apparatus, equipped with an electron column and an ion beam column, a camera system, a manipulator.The method comprising comprises the steps of deriving a first ptychographic image of the sample from a first electron image, thinning the sample, and forming a second ptychographic image of the sample. In an embodiment of the invention the seed image used for the second image is the first ptychografic image. In another embodiment the second ptychographic image is the image of the layer removed during the thinning. In another embodiment the inner potential of the sample is determined and dopant concentrations are determined.
Abstract:
The invention relates to a transmission charged particle microscope comprising a charged particle beam source for emitting a charged particle beam, a sample holder for holding a sample, an illuminator for directing the charged particle beam emitted from the charged particle beam source onto the sample, and a control unit for controlling operations of the transmission charged particle microscope. As defined herein, the transmission charged particle microscope is arranged for operating in at least two modes that substantially yield a first magnification whilst keeping said diffraction pattern substantially in focus. Said at least two modes comprise a first mode having first settings of a final projector lens of a projecting system; and a second mode having second settings of said final projector lens.
Abstract:
The invention relates to a transmission charged particle microscope comprising a charged particle beam source for emitting a charged particle beam, a sample holder for holding a sample, an illuminator for directing the charged particle beam emitted from the charged particle beam source onto the sample, and a control unit for controlling operations of the transmission charged particle microscope. As defined herein, the transmission charged particle microscope is arranged for operating in at least two modes that substantially yield a first magnification whilst keeping said diffraction pattern substantially in focus. Said at least two modes comprise a first mode having first settings of a final projector lens of a projecting system; and a second mode having second settings of said final projector lens.
Abstract:
The disclosure relates to a method of determining an energy width of a charged particle beam, comprising the steps of providing a charged particle beam, directing said beam towards a specimen, and forming an energy-dispersed beam from a flux of charged particles transmitted through the specimen. As defined herein, the method comprises the steps of providing a slit element in a slit plane, and using said slit element for blocking a part of said energy-dispersed beam, as well as the step of modifying said energy-dispersed beam at the location of said slit plane in such a way that said energy dispersed beam is partially blocked at said slit element. The unblocked part of said energy-dispersed beam is imaged and an intensity gradient of said imaged energy-dispersed beam is determined, with which the energy width of the charged particle beam can be determined.
Abstract:
A method for electron microscopy comprises: adjusting at least one of an electron beam and an image beam in such a way that off-axial aberrations inflicted on at least one of the electron beam and the image beam are minimized, the adjusting performed by using a beam adjusting component to obtain at least one modified image beam, wherein the adjusting comprises applying both shifting and tilting to at least one of the electron beam and the image beam and wherein the amount of tilting of at least one of the electron beam and the image beam depends on the amount of shifting of at least one of the electron beam and the image beam respectively and wherein the amount of tilting is computed based on at least one of coma and astigmatism introduced as a consequence of the shift.
Abstract:
An adjustable magnetic field free objective lens for a charged particle microscope is disclosed herein. An example charged particle microscope at least includes first and second optical elements arranged on opposing sides of a sample plane, a third optical element arranged around the sample plane, and a controller coupled to control the first, second and third optical elements. The controller coupled to excite the first and second optical elements to generate first and second magnetic lenses, the first and second magnetic lenses formed on opposing sides of the sample plane and oriented in the same direction, and excite the third optical element to generate a third magnetic lens at the sample plane that is oriented in an opposite direction, where a ratio of the excitation of the third optical element to the excitation of the first and second optical elements adjusts a magnetic field at the sample plane.