Abstract:
An electronic component includes: a substrate formed of ceramic and including one or more pads on an upper surface thereof; a component flip-chip mounted on the upper surface of the substrate with one or more bumps bonded to the one or more pads; and an additional film located on a lower surface of the substrate and overlapping with at least a part of a smaller one of the pad and the bump in each of one or more pad/bump pairs, the one or more pad/bump pairs being composed of the one or more pads and the one or more bumps bonded to each other.
Abstract:
In a wiring substrate of the present invention in which a bump of an electronic parts is bonded to a connection pad of a wiring pattern provided on an insulating film by an ultrasonic flip-chip packaging, a via hole into which a via post acting as a strut to support the connection pad upon the ultrasonic flip-chip packaging is filled is arranged in the insulating film under the connection pad.
Abstract:
In a wiring substrate of the present invention in which a bump of an electronic parts is bonded to a connection pad of a wiring pattern provided on an insulating film by an ultrasonic flip-chip packaging, a via hole into which a via post acting as a strut to support the connection pad upon the ultrasonic flip-chip packaging is filled is arranged in the insulating film under the connection pad.
Abstract:
A mounting method and a mounting apparatus of an electronic part onto a substrate are provided, which enable inspection of a bond formed between an electronic part and a substrate when flip-chip bonding is executed by an ultrasonic wave and thermocompression bonding connecting method. The semiconductor chip has bumps which, when are compressed and subjected to ultrasonic vibration, enable formation of a connection between the semiconductor chip and a substrate conductor. The mounting apparatus is constructed so that the amount of compression of the bumps (sinking amounts of bumps) when a predetermined weight R and an ultrasonic vibration US are applied to the bumps for a predetermined time are monitored by the laser displacement meter, a judgment is made as to whether or not the sinking amounts respectively fall within desired ranges, and then a judgment is made as to whether the joint formed by the ultrasonic wave and thermocompression bonding connection utilizing the flip-chip bonding system is defective or non-defective.
Abstract:
In connection with a method of manufacturing a semiconductor device including a step of establishing electrical connection between terminal electrodes of a circuit board and electrode pads of a semiconductor substrate by means of ultrasonic vibration, prevention of flaws stemming from ultrasonic vibration is aimed. A semiconductor substrate is mounted on the surface of an insulation circuit board such that terminal electrodes of the insulation circuit board oppose electrode pads of a semiconductor board. Desired electrical connection is established by means of applying ultrasonic vibration between a first holding tool for holding the insulation circuit board and a second holding tool for holding the semiconductor substrate. Ultrasonic vibration is applied while intermediate material of lower hardness is interposed between the first holding tool and the insulation circuit board and while another intermediate material of lower hardness is interposed between the second holding tool and the insulation circuit board.
Abstract:
A semiconductor-chip is bonded to a chip-carrier substrate by way of a gold-to-gold bonding interface. A vacuum chuck is provided to physically hold the semiconductor-chip in physical contact with, the chip-carrier substrate as static force, ultrasonic power, and an elevated temperature are applied to two mating gold surfaces that are formed by two continuous and physically mating gold layers. The bonded assembly is encased in a potting ceramic, or the bonded assembly is encased in a housing that includes a transparent cover that enables use as an optoelectronic semiconductor device.
Abstract:
Contact bumps between a contact pad and a substrate can include a rough surface that can mate with the material of the substrate of which may be flexible. The rough surface can enhance the bonding strength of the contacts, for example, against shear and tension forces, especially for flexible systems such as smart label and may be formed via roller or other methods.
Abstract:
A method and clamping apparatus for securing a substrate within a substrate carrier during an ultrasonic mounting process. The clamping apparatus may include a substrate carrier having a top plate and a bottom plate, the top plate and the bottom plate forming a cavity dimensioned to hold a substrate. A clamping plate is positioned on a side of the top plate opposite the bottom plate, the clamping plate having an opening aligned with the cavity and a pair of clamping members, each of the pair of clamping members extending toward a center of the opening and through the cavity such that the clamping member presses portions of the substrate exposed through the opening against the bottom plate. The method may include providing a clamping plate having an opening configured for alignment with a cavity formed in a substrate carrier and mounting a pair of resilient arms to the clamping plate.
Abstract:
The invention relates to a contact bump connection (24) and to a method for producing a contact bump connection between an electronic component being provided with at least one terminal face (11) and a contact substrate (26) being contacted with the component and having at least one second terminal face (25), wherein the first terminal face is provided with a contact bump (10), which has a raised edge (15) and has at least one displacement pin (16) in a displacement compartment (18) being surrounded by the raised edge and being open towards a head end of the contact bump, and wherein, in a contact region (31) with the first terminal face, the second terminal face has a contact bead (30), which is formed by displacement of a contact material (29) of the second terminal face into the displacement compartment and which surrounds the displacement pin, said contact bead having a bead crown (33) which is oriented to a bottom (17) of the displacement compartment and is raised relative to a level contact surface (32) of the second terminal face surrounding the contact region.
Abstract:
In a wiring substrate of the present invention in which a bump of an electronic parts is bonded to a connection pad of a wiring pattern provided on an insulating film by an ultrasonic flip-chip packaging, a via hole into which a via post acting as a strut to support the connection pad upon the ultrasonic flip-chip packaging is filled is arranged in the insulating film under the connection pad.