Abstract:
The disclosure relates to a selective head-to-head dimerization of conjugated diene compounds by a catalytic process in a reaction medium without solvent or with solvent comprising hydrocarbons, in the presence of a specific additive of the phenol type.
Abstract:
This invention describes processes to make products by cross metathesis of functionalized or non-functionalized olefins with poly-branched poly-olefins such as terpenes (e.g., farnesene(s), α-farnesene, β-farnesene, β-myrcene, etc.) and compositions made by such methods. More particularly, the present invention relates to methods of making (i) cross metathesis products by a cross metathesis reaction between at least one hydrovinylated olefinic substrate and at least one hydrovinylated cross metathesis substrate in the presence of at least one olefin metathesis catalyst; (ii) cross metathesis products by a cross metathesis reaction between at least one hydrovinylated olefinic substrate and at least one cross metathesis substrate in the presence of at least one olefin metathesis catalyst; and (iii) cross metathesis products by a cross metathesis reaction between at least one olefinic substrate and at least one hydrovinylated cross metathesis substrate in the presence of at least one olefin metathesis catalyst; as well as compositions made by such methods.
Abstract:
In one aspect, the invention provides a method for synthesizing a fatty olefin derivative. The method includes: a) contacting an olefin according to Formula I with a metathesis reaction partner according to Formula IIb in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product according to Formula IIIb: and b) converting the metathesis product to the fatty olefin derivative. Each R1 is independently selected from H, C1-18 alkyl, and C2-18 alkenyl; R2b is C1-8 alkyl; subscript y is an integer ranging from 0 to 17; and subscript z is an integer ranging from 0 to 17. In certain embodiments, the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst. In various embodiments, the fatty olefin derivative is a pheromone. Pheromone compositions and methods of using them are also described.
Abstract:
Methods and compositions for stabilization and subsequent hydrogenation of a microbial-derived immiscible olefin are described. The methods comprise providing a feed stream to the inlet of a reactor, wherein the feed stream comprises a microbial-derived immiscible olefin composition stabilized with a phenolic antioxidant which is a phenol derivative containing an unfused phenyl ring with one or more hydroxyl substituents. The methods further comprise contacting the feed stream with hydrogen in the presence of a hydrogenation catalyst at a temperature of about 20° C. or greater, and generating a product stream comprising a hydrogenated immiscible olefin composition. The microbial-derived immiscible olefin composition stabilized with the phenolic antioxidant remains stable over time, and its hydrogenation reaction time and process are improved.
Abstract:
Methods are provided for refining natural oil feedstocks and partially hydrogenating polyunsaturated olefins and polyunsaturated esters. The methods comprise reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the polyunsaturated olefins from the polyunsaturated esters in the metathesized product. In certain embodiments, the methods further comprise partially hydrogenating the polyunsaturated olefins in the presence of a hydrogenation catalyst, wherein at least a portion of the polyunsaturated olefins are converted to monounsaturated olefins. In other embodiments, the methods further comprise partially hydrogenating the polyunsaturated esters in the presence of a hydrogenation catalyst, wherein at least a portion of the polyunsaturated esters are converted to monounsaturated esters.
Abstract:
The invention relates to a process for converting hydrocarbons into products containing aldehydes and/or alcohols. The invention also relates to producing olefins from the aldehyde and alcohol, to polymerizing the olefins, and to equipment useful for these processes.
Abstract:
The present invention relates to methods for preparation of lycopenes, especially to lycopenes with high all-E contents or high 6Z contents from C15-Wittig slats mixtures. (with high all-E-contents and high 6Z-contents, respectively). C15-Wittig slats mixtures are purified and 6Z-C15-Wittig salts are extracted from the mixtures. The extracted 6Z-C15-Wittig salts are, used in the synthesis of lycopenes with high 6Z contents and the residues are used in the synthesis of lycopenes with high All-E contents.
Abstract:
The present invention relates to methods for preparation of lycopenes, especially to lycopenes with high all-E contents or high 6Z contents from C15-Wittig slats mixtures. (with high all-E-contents and high 6Z-contents, respectively). C15-Wittig slats mixtures are purified and 6Z-C15-Wittig salts are extracted from the mixtures. The extracted 6Z-C15-Wittig salts are, used in the synthesis of lycopenes with high 6Z contents and the residues are used in the synthesis of lycopenes with high All-E contents.
Abstract:
A method for increasing the rate of phosphine oxide reduction, preferably during a Wittig reaction comprising use of an acid additive is provided. A room temperature catalytic Wittig reaction (CWR) the rate of reduction of the phosphine oxide is increased due to the addition of the acid additive is described. Furthermore, the extension of the CWR to semi-stabilized and non-stabilized ylides has been accomplished by utilization of a masked base and/or ylide-tuning.
Abstract:
A method of producing from a biomass mesitylene-isopentane fuel is provided. A biomass may be fermented to form acetone. The acetone is converted in a catalytic reactor to mesitylene and mesityl oxide. The mesitylene is separated in a phase separator and the organic face containing mesityl oxide is sent to a dehydration reactor, then to a demethylation reactor, and finally to a hydrogenation reactor from which isopentane is recovered. This isopentane is then mixed with the mesitylene to form the final mesitylene-isopentane fuel. The catalytic reaction with acetone employs catalysts of either niobium, vanadium or tantalum.