Abstract:
A half bridge is described with at least one transistor having a channel that is capable in a first mode of operation of blocking a substantial voltage in at least one direction, in a second mode of operation of conducting substantial current in one direction through the channel and in a third mode of operation of conducting substantial current in an opposite direction through the channel. The half bridge can have two circuits with such a transistor.
Abstract:
An electronic component includes a III-N transistor and a III-N rectifying device both encased in a single package. A gate electrode of the III-N transistor is electrically connected to a first lead of the single package or to a conductive structural portion of the single package, a drain electrode of the III-N transistor is electrically connected to a second lead of the single package and to a first electrode of the III-N rectifying device, and a second electrode of the III-N rectifying device is electrically connected to a third lead of the single package.
Abstract:
An electronic component is described which includes a first transistor encased in a first package, the first transistor being mounted over a first conductive portion of the first package, and a second transistor encased in a second package, the second transistor being mounted over a second conductive portion of the second package. The component further includes a substrate comprising an insulating layer between a first metal layer and a second metal layer. The first package is on one side of the substrate with the first conductive portion being electrically connected to the first metal layer, and the second package is on another side of the substrate with the second conductive portion being electrically connected to the second metal layer. The first package is opposite the second package, with at least 50% of a first area of the first conductive portion being opposite a second area of the second conductive portion.
Abstract:
Electronic modules, and methods of forming and operating modules, are described. The modules include a capacitor, a first switching device, and a second switching device. The electronic modules further include a substrate such as a DBC substrate, which includes an insulating layer between a first metal layer and a second metal layer, and may include multiple layers of DBC substrates stacked over one another. The first metal layer includes a first portion and a second portion isolated from one another by a trench formed through the first metal layer between the two portions. The first and second switching devices are over the first metal layer, a first terminal of the capacitor is electrically connected to the first portion of the first metal layer, and a second terminal of the capacitor is electrically connected to the second portion of the first metal layer, with the capacitor extending over the trench.
Abstract:
A circuit includes an electronic component package that comprises at least a first lead, a III-N device in the electronic component package, a gate driver, and a ferrite bead. The III-N device comprises a drain, gate, and source, where the source is coupled to the first lead. The gate driver comprises a first terminal and a second terminal, where the first terminal is coupled to the first lead. The ferrite bead is coupled between the gate of the III-N transistor and the second terminal of the gate driver. When switching, the deleterious effects of the parasitic inductance of the circuit gate loop are mitigated by the ferrite bead.
Abstract:
An electronic component includes a high voltage switching transistor encased in a package. The high voltage switching transistor comprises a source electrode, a gate electrode, and a drain electrode all on a first side of the high voltage switching transistor. The source electrode is electrically connected to a conducting structural portion of the package. Assemblies using the abovementioned transistor with another transistor can be formed, where the source of one transistor can be electrically connected to a conducting structural portion of a package containing the transistor and a drain of the second transistor is electrically connected to the second conductive structural portion of a package that houses the second transistor. Alternatively, the source of the second transistor is electrically isolated from its conductive structural portion, and the drain of the second transistor is electrically isolated from its conductive structural portion.
Abstract:
An electronic component includes a depletion-mode transistor, an enhancement-mode transistor, and a resistor. The depletion-mode transistor has a higher breakdown voltage than the enhancement-mode transistor. A first terminal of the resistor is electrically connected to a source of the enhancement-mode transistor, and a second terminal of the resistor and a source of the depletion-mode transistor are each electrically connected to a drain of the enhancement-mode transistor. A gate of the depletion-mode transistor can be electrically connected to a source of the enhancement-mode transistor.
Abstract:
A III-N semiconductor device can include an electrode-defining layer having a thickness on a surface of a III-N material structure. The electrode-defining layer has a recess with a sidewall, the sidewall comprising a plurality of steps. A portion of the recess distal from the III-N material structure has a first width, and a portion of the recess proximal to the III-N material structure has a second width, the first width being larger than the second width. An electrode is in the recess, the electrode including an extending portion over the sidewall of the recess. A portion of the electrode-defining layer is between the extending portion and the III-N material structure. The sidewall forms an effective angle of about 40 degrees or less relative to the surface of the III-N material structure.
Abstract:
An electronic component includes a high voltage switching transistor encased in a package. The high voltage switching transistor comprises a source electrode, a gate electrode, and a drain electrode all on a first side of the high voltage switching transistor. The source electrode is electrically connected to a conducting structural portion of the package. Assemblies using the abovementioned transistor with another transistor can be formed, where the source of one transistor can be electrically connected to a conducting structural portion of a package containing the transistor and a drain of the second transistor is electrically connected to the second conductive structural portion of a package that houses the second transistor. Alternatively, the source of the second transistor is electrically isolated from its conductive structural portion, and the drain of the second transistor is electrically isolated from its conductive structural portion.
Abstract:
An electronic component includes a switching device comprising a source, a gate, and a drain, the switching device having a predetermined device switching rate. The electronic component further includes a gate driver electrically connected to the gate and coupled between the source and the gate of the switching device, the gate driver configured to switch a gate voltage of the switching device at a gate driver switching rate. The gate driver is configured such that in operation, an output current of the gate driver cannot exceed a first current level, wherein the first current level is sufficiently small to provide a switching rate of the switching device in operation to be less than the predetermined device switching rate.