Abstract:
A transistor includes a III-N layer structure including a III-N channel layer between a III-N barrier layer and a III-N depleting layer, where the III-N channel layer includes a 2DEG channel formed adjacent an interface between the III-N channel layer and the III-N barrier layer; a source and a drain, each of which being directly connected to the III-N channel layer; a gate between the source and the drain, the gate being over the III-N layer structure, where the III-N depleting layer includes a first portion that is disposed in a device access region between the gate and the drain; and where the source electrically contacts the first portion of the III-N depleting layer, and the drain is electrically isolated from the first portion of the III-N depleting layer.
Abstract:
Transistor devices which include semiconductor layers with integrated hole collector regions are described. The hole collector regions are configured to collect holes generated in the transistor device during operation and transport them away from the active regions of the device. The hole collector regions can be electrically connected or coupled to the source, the drain, or a field plate of the device. The hole collector regions can be doped, for example p-type or nominally p-type, and can be capable of conducting holes but not electrons.
Abstract:
Group III-nitride devices are described that include a stack of III-nitride layers, passivation layers, and conductive contacts. The stack includes a channel layer with a 2DEG channel, a barrier layer and a spacer layer. One passivation layer directly contacts a surface of the spacer layer on a side opposite to the channel layer and is an electrical insulator. The stack of III-nitride layers and the first passivation layer form a structure with a reverse side proximate to the first passivation layer and an obverse side proximate to the barrier layer. Another passivation layer is on the obverse side of the structure. Defected nucleation and stress management layers that form a buffer layer during the formation process can be partially or entirely removed.
Abstract:
A III-N semiconductor device that includes a substrate and a nitride channel layer including a region partly beneath a gate region, and two channel access regions on opposite sides of the part beneath the gate. The channel access regions may be in a different layer from the region beneath the gate. The device includes an AlXN layer adjacent the channel layer wherein X is gallium, indium or their combination, and a preferably n-doped GaN layer adjacent the AlXN layer in the areas adjacent to the channel access regions. The concentration of Al in the AlXN layer, the AlXN layer thickness and the n-doping concentration in the n-doped GaN layer are selected to induce a 2DEG charge in channel access regions without inducing any substantial 2DEG charge beneath the gate, so that the channel is not conductive in the absence of a switching voltage applied to the gate.
Abstract:
A transistor includes a III-N layer structure comprising a III-N channel layer between a III-N barrier layer and a p-type III-N layer. The transistor further includes a source, a drain, and a gate between the source and the drain, the gate being over the III-N layer structure. The p-type III-N layer includes a first portion that is at least partially in a device access region between the gate and the drain, and the first portion of the p-type III-N layer is electrically connected to the source and electrically isolated from the drain. When the transistor is biased in the off state, the p-type layer can cause channel charge in the device access region to deplete as the drain voltage increases, thereby leading to higher breakdown voltages.
Abstract:
A III-N device is described has a buffer layer, a first III-N material layer on the buffer layer, a second III-N material layer on the first III-N material layer on an opposite side from the buffer layer and a dispersion blocking layer between the buffer layer and the channel layer. The first III-N material layer is a channel layer and a compositional difference between the first III-N material layer and the second III-N material layer induces a 2DEG channel in the first III-N material layer. A sheet or a distribution of negative charge at an interface of the channel layer and the dispersion blocking layer confines electrons away from the buffer layer.
Abstract:
An electronic component includes a high-voltage depletion-mode transistor and a low-voltage enhancement-mode transistor both encased in a single package. A source electrode of the high-voltage depletion-mode transistor is electrically connected to a drain electrode of the low-voltage enhancement-mode transistor, a drain electrode of the high-voltage depletion-mode transistor is electrically connected to a drain lead of the single package, a gate electrode of the low-voltage enhancement-mode transistor is electrically connected to a gate lead of the single package, a gate electrode of the high-voltage depletion-mode transistor is electrically connected to an additional lead of the single package, and a source electrode of the low-voltage enhancement-mode transistor is electrically connected to a conductive structural portion of the single package.
Abstract:
A III-N device is described with a III-N layer, an electrode thereon, a passivation layer adjacent the III-N layer and electrode, a thick insulating layer adjacent the passivation layer and electrode, a high thermal conductivity carrier capable of transferring substantial heat away from the III-N device, and a bonding layer between the thick insulating layer and the carrier. The bonding layer attaches the thick insulating layer to the carrier. The thick insulating layer can have a precisely controlled thickness and be thermally conductive.
Abstract:
Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
Abstract:
An electronic component includes a high-voltage depletion-mode transistor and a low-voltage enhancement-mode transistor. A source electrode of the high-voltage depletion-mode transistor is electrically connected to a drain electrode of the low-voltage enhancement-mode transistor, and a gate electrode of the high-voltage depletion-mode transistor is electrically coupled to the source electrode of the low-voltage enhancement-mode transistor. The on-resistance of the enhancement-mode transistor is less than the on-resistance of the depletion-mode transistor, and the maximum current level of the enhancement-mode transistor is smaller than the maximum current level of the depletion-mode transistor.