Abstract:
Self-limiting cavities are formed within a crystalline semiconductor substrate and beneath a stack of semiconductor layers used to form a nanosheet transistor device. Inner ends of the cavities merge beneath the stack while the outer ends thereof adjoin isolation regions within the substrate. The cavities are filled with electrically insulating material to provide bottom device isolation. Source/drain regions are grown in vertical trenches extending through the stack of semiconductor layers following formation of dielectric inner spacers. The bottom ends of the trenches adjoin the electrically insulating material within the cavities.
Abstract:
In a fin-Field Effect Transistor (finFET), a recess is created at a location of a fin, the fin being coupled to a gate of the finFET, the recess extending into a substrate interfacing with the gate. The recess is filled at least partially with a first conductive material. The first conductive material is insulated from the gate. The fin is replaced with a replacement structure. The replacement structure is electrically connected to the first conductive material using a second conductive material. the second conductive material is insulated from a first surface of the finFET. A first electrical contact structure is fabricated on the first surface. A second electrical contact structure is fabricated on a second surface of the finFET, the second surface being on a different spatial plane than the first surface.
Abstract:
Embodiments are directed to a method of fabricating inner spacers of a nanosheet FET. The method includes forming sacrificial and channel nanosheets over a substrate, removing sidewall portions of the sacrificial nanosheet, and forming a dielectric that extends over the channel nanosheet and within a space that was occupied by the removed sidewall portions of the sacrificial nanosheet. The method further includes forming a top protective spacer over the channel nanosheet and the dielectric, as well as applying a directional etch to the top protective spacer, the channel nanosheet, and the dielectric, wherein the directional etch is configured to be selective to the channel nanosheet and the dielectric, wherein the directional etch is configured to not be selective to the top protective spacer, and wherein applying the directional etch etches portions of the channel nanosheet and portions of the flowable dielectric that are not under the top dielectric.
Abstract:
Techniques for forming a metastable phosphorous P-doped silicon Si source drain contacts are provided. In one aspect, a method for forming n-type source and drain contacts includes the steps of: forming a transistor on a substrate; depositing a dielectric over the transistor; forming contact trenches in the dielectric that extend down to source and drain regions of the transistor; forming an epitaxial material in the contact trenches on the source and drain regions; implanting P into the epitaxial material to form an amorphous P-doped layer; and annealing the amorphous P-doped layer under conditions sufficient to form a crystalline P-doped layer having a homogenous phosphorous concentration that is greater than about 1.5×1021 atoms per cubic centimeter (at./cm3). Transistor devices are also provided utilizing the present P-doped Si source and drain contacts.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
Embodiments are directed to forming a structure comprising at least one fin, a gate, and a spacer, applying an annealing process to the structure to create a gap between the at least one fin and the spacer, and growing an epitaxial semiconductor layer in the gap between the spacer and the at least one fin.
Abstract:
Tapered source and drain contacts for use in an epitaxial FinFET prevent short circuits and damage to parts of the FinFET during contact processing, thus improving device reliability. The inventive contacts feature tapered sidewalls and a pedestal where electrical contact is made to fins in the source and drain regions. The pedestal also provides greater contact area to the fins, which are augmented by extensions. Raised isolation regions define a valley around the fins. During source/drain contact formation, the valley is lined with a conformal barrier that also covers the fins themselves. The barrier protects underlying local oxide and adjacent isolation regions against gouging while forming the contact. The valley is filled with an amorphous silicon layer that protects the epitaxial fin material from damage during contact formation. A simple tapered structure is used for the gate contact.
Abstract:
Techniques for forming closely packed hybrid nanowires are provided. In one aspect, a method for forming hybrid nanowires includes: forming alternating layers of a first and a second material in a stack on a substrate; forming a first trench(es) and a second trench(es) in the stack; laterally etching the layer of the second material selectively within the first trench(es) to form first cavities in the layer; growing a first epitaxial material within the first trench(es) filling the first cavities; laterally etching the layer of the second material selectively within the second trench(es) to form second cavities in the layer; growing a second epitaxial material within the second trench(es) filling the second cavities, wherein the first epitaxial material in the first cavities and the second epitaxial material in the second cavities are the hybrid nanowires. A nanowire FET device and method for formation thereof are also provided.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.