Abstract:
In a method for producing an electronic component device, a heat bonding step is performed in a state in which low melting point metal layers including low melting point metals including, for example, Sn as the main component, are arranged to sandwich, in the thickness direction, a high melting point metal layer including a high melting point metal including, for example, Cu as the main component, which is the same or substantially the same as high melting point metals defining first and second conductor films to be bonded. In order to generate an intermetallic compound of the high melting point metal and the low melting point metal, the distance in which the high melting point metal is to be diffused in each of the low melting point metal layers is reduced. Thus, the time required for the diffusion is reduced, and the time required for the bonding is reduced.
Abstract:
A method of fabricating a semiconductor device includes providing a device substrate having a front side and a back side corresponding to a front side and a back side of the semiconductor device, forming, on the front side of the device substrate, a metal feature, forming, on the back side of the device substrate, an insulating layer, forming, on the back side of the semiconductor device, a trench exposing the metal feature, forming a bonding pad in the trench in electrical communication with the metal feature, and forming, on the insulating layer, a metal shield, in which the metal shield and the bonding pad have different thicknesses relative to each other.
Abstract:
In a chip package, semiconductor dies in a vertical stack of semiconductor dies or chips (which is referred to as a ‘plank stack’) are aligned by positive features that are mechanically coupled to negative features recessed below the surfaces of adjacent semiconductor dies. Moreover, the chip package includes an interposer plate at approximately a right angle to the plank stack, which is electrically coupled to the semiconductor dies along an edge of the plank stack. In particular, electrical pads proximate to a surface of the interposer plate (which are along a stacking direction of the plank stack) are electrically coupled to pads that are proximate to edges of the semiconductor dies by an intervening conductive material, such as solder balls or spring connectors. Note that the chip package may facilitate high-bandwidth communication of signals between the semiconductor dies and the interposer plate.
Abstract:
A method includes providing a silicon-containing die and providing a heat sink having a palladium layer over a first surface of the heat sink. A first gold layer is located over one of a first surface of the die or the palladium layer. The silicon-containing die is bonded to the heat sink, where bonding includes joining the silicon-containing die and the heat sink such that the first gold layer and the palladium layer are between the first surface of the silicon-containing die and the first surface of the heat sink, and heating the first gold layer and the palladium layer to form a die attach layer between the first surface of the silicon-containing die and the first surface of the heat sink, the die attach layer comprising a gold interface layer having a plurality of intermetallic precipitates, each of the plurality of intermetallic precipitates comprising palladium, gold, and silicon.
Abstract:
An electronic component includes an electrode portion and a solder portion formed on the electrode portion. In the electronic component, the electrode portion includes a first conductive portion and a second conductive portion each having different diffusion coefficient with respect to a component of the solder portion on a top surface of the electrode portion, and the solder portion is formed on the first conductive portion and the second conductive portion.
Abstract:
A chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device.
Abstract:
A solder is deposited on a heat sink. The solder is first reflowed at a first temperature that is below about 120° C. The solder is second heat aged at a temperature that causes the first reflowed solder to have an increased second reflow temperature. The heat aging process results in less compressive stress in a die that uses the solder as a thermal interface material. The solder can have a composition that reflows and adheres to the die and the heat sink without the use of organic fluxes.
Abstract:
Disclosed herein is substrate for flip chip bonding, in which a base solder layer is formed between a pad and a metal post, thereby increasing impact resistance and mounting reliability. A method of fabricating the substrate for flip chip bonding is also provided.
Abstract:
A semiconductor package including an internal package including at least one semiconductor chip sealed with an internal seal, an external substrate on which the internal package is mounted, and an external seal sealing the internal package is provided. Also provided is a method of manufacturing the semiconductor package including forming an internal package including at least one semiconductor chip sealed with an internal seal, mounting the internal package on an external substrate, and sealing the internal package with an external seal. The internal seal and the external seal have different Young's moduli, for example, a Young's modulus of the internal seal is smaller than a Young's modulus of the external seal. Accordingly, the semiconductor package is less susceptible to warpage and can be handled with relative ease in subsequent semiconductor package processes.
Abstract:
A thin stacked semiconductor device has a plurality of circuits that are laminated and formed sequentially in a specified pattern to form a multilayer wiring part. At the stage for forming the multilayer wiring part, a filling electrode is formed on the semiconductor substrate such that the surface is covered with an insulating film, a post electrode is formed on specified wiring at the multilayer wiring part, a first insulating layer is formed on one surface of the semiconductor substrate, the surface of the first insulating layer is removed by a specified thickness to expose the post electrode, and the other surface of the semiconductor substrate is ground to expose the filling electrode and to form a through-type electrode. A second insulating layer if formed on one surface of the semiconductor substrate while exposing the forward end of the through-type electrode, and bump electrodes are formed on both electrodes.