Abstract:
Integrating a semiconductor component with a substrate through a low loss interconnection formed through adaptive patterning includes forming a cavity in the substrate, placing the semiconductor component therein, filling a gap between the semiconductor component and substrate with a fill of same or similar dielectric constant as that of the substrate and adaptively patterning a low loss interconnection on the fill and extending between the contacts of the semiconductor component and the electrical traces on the substrate. The contacts and leads are located and adjoined using an adaptive patterning technique that places and forms a low loss radio frequency transmission line that compensates for any misalignment between the semiconductor component contacts and the substrate leads.
Abstract:
A layered chip package includes a main body and wiring. The main body has a main part. The main part has a top surface and a bottom surface and includes a plurality of layer portions that are stacked. The wiring includes a plurality of lines passing through all the plurality of layer portions. Each layer portion includes a semiconductor chip and a plurality of electrodes. The semiconductor chip has a first surface, and a second surface opposite thereto. The plurality of electrodes are disposed on a side of the first surface of the semiconductor chip. The plurality of layer portions include two or more pairs of first and second layer portions in each of which the first and second layer portions are arranged so that the first or second surfaces of the respective semiconductor chips face each other. The plurality of electrodes include a plurality of first connection parts and a plurality of second connection parts. In the first layer portion, the plurality of first connection parts are in contact with the plurality of lines. In the second layer portion, the plurality of second connection parts are in contact with the plurality of lines.
Abstract:
The present invention provides systems and methods for assembling an electronic assembly using an anisotropic conducting membrane (ACM) as a component interconnect and a substrate embossed with placement cavities or a positional fixture to facilitate component placement on the substrate in the electronic assembly. The fixture may comprise multiple layers of interconnects to improve routing density for the electronic assembly enclosed in a housing. An alignment chain may be used to monitor positional and contact integrity of the ACM interfaced components in a complex assembly. The systems and methods allow components to be detached for reuse. Interconnection elements or conduction pathways at the components can be used to interconnect a plurality of neighboring substrates over the ACM layers into a stacked electronic assembly.
Abstract:
A display device includes a display panel, a first film attached to the display panel, an adhesive member interposed between the display panel and the first film and extending in a first direction to attach the display panel to the first film, a first test electrode covered by the adhesive member; a second test electrode covered by the adhesive member and spaced apart from the first test electrode in a second direction perpendicular to the first direction, and test lines comprising a first test line electrically connected to the first test electrode and a second test line electrically connected to the second test electrode, where the adhesive member is disposed between the first test electrode and the second test electrode in the second direction.
Abstract:
A display module includes a display panel with a plurality of bonding electrodes arranged at intervals along a selected side edge of a non-display surface and divided into two bonding electrode groups, a first flexible circuit board and a second flexible circuit board. For the first flexible circuit board, each first conductive contact piece in a first wiring region is connected to a bonding electrode in a first bonding electrode group. For the second flexible circuit board, each second conductive contact piece in a second wiring region is connected to a bonding electrode in a second bonding electrode group. The first wiring region is closer to the selected side edge than the second wiring region in a first direction. The first fan-out region is spaced apart from the second wiring region in a second direction perpendicular to the first direction.
Abstract:
In some embodiments, the present disclosure relates to an integrated chip that includes bonding structure arranged directly between a first substrate and a second substrate. The first substrate includes a first transparent material and a first alignment mark. The first alignment mark is arranged on an outer region of the first substrate and also includes the first transparent material. The first alignment mark is defined by surfaces of the first substrate that are arranged between an uppermost surface of the first substrate and a lowermost surface of the first substrate. The second substrate includes a second alignment mark on an outer region of the second substrate. The second alignment mark directly underlies the first alignment mark, and the bonding structure is arranged directly between the first alignment mark and the second alignment mark.
Abstract:
The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a first semiconductor structure, a second semiconductor structure, a through semiconductor via, and an insulation layer. The first semiconductor structure includes a first circuit layer and a first main bonding layer in the first circuit layer and substantially coplanar with a front face of the first circuit layer. The second semiconductor structure includes a second circuit layer on the first circuit layer and a second main bonding layer in the second circuit layer, and topologically aligned with and contacted to the first main bonding layer. The through semiconductor via is along the second semiconductor structure and the first and second main bonding layer, and extending to the first circuit layer. The insulation layer is positioned on a sidewall of the through semiconductor via.
Abstract:
Embodiments of a microelectronic packaged device and methods of making are provided, where the microelectronic packaged device includes a system package comprising a first die and a second die, wherein the first die and the second die are laterally positioned to one another, and the first die and the second die are laterally separated from one another by mold compound; and a conductive trace formed between a first conductive surface on an exposed surface of the first die and a second conductive surface on an exposed surface of the second die, wherein the conductive trace is laser sintered directly on the first conductive surface, on a portion of the exposed surface of the first die, on a portion of a top surface of the mold compound, on a portion of the exposed surface of the second die, and on the second conductive surface.
Abstract:
Provided is a multilayer substrate obtained by laminating semiconductor substrates each having a trough electrode. The multilayer substrate has excellent conduction characteristics and can be manufactured at low cost. Conductive particles are each selectively present at a position where the through electrodes face each other as viewed in a plan view of the multilayer substrate. The multilayer substrate has a connection structure in which the facing through electrodes are connected by the conductive particles, and the semiconductor substrates each having the through electrode are bonded by an insulating adhesive.
Abstract:
Even in case of conductive particles being clamped between stepped sections of substrate electrodes and electrode terminals, conductive particles sandwiched between each main surface of the substrate electrodes and electrode terminals are sufficiently compressed, ensuring electrical conduction. An electronic component is connected to a circuit substrate via an anisotropic conductive adhesive agent, on respective edge-side areas of substrate electrodes of the circuit substrate and electrode terminals of the electronic component, stepped sections are formed and abutted, conductive particles are sandwiched between each main surface and stepped sections of the substrate electrodes and electrode terminals; the conductive particles and stepped sections satisfy formula, a+b+c≦0.8 D (1), wherein a is height of the stepped section of the electrode terminals, b is height of the stepped section of the substrate electrodes, c is gap distance between each stepped sections and D is diameter of conductive particles.