Abstract:
In a manufacturing method for layered chip packages, a layered substructure with at least one additional package joined thereto is used to produce a plurality of layered chip packages. The layered substructure includes a plurality of main bodies to be separated from each other later. Each main body includes: a main part having top and bottom surfaces and including a plurality of layer portions stacked on each other; and a plurality of main terminals disposed on at least one of the top and bottom surfaces of the main part. The additional package includes an additional semiconductor chip and at least one additional terminal that is electrically connected to the additional semiconductor chip and in contact with at least one of the plurality of main terminals.
Abstract:
A layered chip package includes a main body and wiring. The main body has a main part. The main part has a top surface and a bottom surface and includes a plurality of layer portions that are stacked. The wiring includes a plurality of lines passing through all the plurality of layer portions. Each layer portion includes a semiconductor chip and a plurality of electrodes. The semiconductor chip has a first surface, and a second surface opposite thereto. The plurality of electrodes are disposed on a side of the first surface of the semiconductor chip. The plurality of layer portions include two or more pairs of first and second layer portions in each of which the first and second layer portions are arranged so that the first or second surfaces of the respective semiconductor chips face each other. The plurality of electrodes include a plurality of first connection parts and a plurality of second connection parts. In the first layer portion, the plurality of first connection parts are in contact with the plurality of lines. In the second layer portion, the plurality of second connection parts are in contact with the plurality of lines.
Abstract:
A layered chip package includes a main body. The main body includes a main part, and further includes first terminals and second terminals disposed on the top and bottom surfaces of the main part, respectively. The main part includes first and second layer portions, and through electrodes penetrating them. The through electrodes are electrically connected to the first and second terminals. Each of the layer portions includes a semiconductor chip having a first surface and a second surface opposite thereto, and further includes surface electrodes. The surface electrodes are disposed on a side of the semiconductor chip opposite to the second surface. The first and second layer portions are bonded to each other such that the respective second surfaces face each other. The first terminals are formed by using the surface electrodes of the first layer portion. The second terminals are formed by using the surface electrodes of the second layer portion.
Abstract:
A layered chip package includes a main body, and wiring including a plurality of wires disposed on a side surface of the main body. The main body includes a plurality of semiconductor chips stacked, and a plurality of electrodes that electrically connect the semiconductor chips to the wires. A method of manufacturing the layered chip package includes the steps of: fabricating a substructure that includes an array of a plurality of pre-separation main bodies and a plurality of holes for accommodating a plurality of preliminary wires, the holes being formed between two adjacent pre-separation main bodies; forming the preliminary wires in the plurality of holes by plating; and cutting the substructure so that the plurality of pre-separation main bodies are separated from each other and the preliminary wires are split into two sets of wires of two separate main bodies, whereby a plurality of layered chip packages are formed.
Abstract:
A semiconductor substrate has a plurality of groove portions formed along scribe lines. The semiconductor substrate includes: a device region in contact with at least any one of the plurality of groove portions and having a semiconductor device formed therein; a surface insulating layer formed to cover the device region and constituting a surface layer of the semiconductor substrate; and a wiring electrode connected to the semiconductor device and formed in a protruding shape rising above a surface of the surface insulating layer. The semiconductor substrate can be manufactured by forming a plurality of groove portions along scribe lines; applying an insulating material to a surface on a side where the plurality of groove portions are formed to form a surface insulating layer; and forming a wiring electrode connected to the semiconductor device and in a protruding shape rising above a surface of the surface insulating layer, after the formation of the surface insulating layer.
Abstract:
A thin film piezoelectric element of the present invention includes a substrate and a piezoelectric thin film stack formed on the substrate. The piezoelectric thin film stack includes a top electrode layer, a bottom electrode layer and a piezoelectric layer sandwiched between the top electrode layer and the bottom electrode layer, wherein the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer whose compositions have different phase structures. The present invention can obtain high piezoelectric constants, enhanced coercive field strength, thereby enabling larger applied field strength without depolarization and achieving a large stroke for its applied device.
Abstract:
A layered chip package includes a main body, and wiring that includes a plurality of wires disposed on a side surface of the main body. The main body includes: a main part including first and second layer portions; and a plurality of first and second terminals that are disposed on the top and bottom surfaces of the main part, respectively, and are electrically connected to the plurality of wires. Each layer portion includes a semiconductor chip having a first surface and a second surface opposite thereto, and includes a plurality of electrodes. The electrodes are disposed on a side of the semiconductor chip opposite to the second surface. The first and second layer portions are bonded to each other such that the respective second surfaces face each other. The first terminals are formed by using the electrodes of the first layer portion, and the second terminals are formed by using the electrodes of the second layer portion.
Abstract:
A thin-film magnetic head is constructed such that a main magnetic pole layer, a write shield layer, a gap layer, and a thin-film coil are laminated on a substrate. The write shield layer has an opposing shield part opposing the main magnetic pole layer and a front shield part. The front shield part is connected to the opposing shield part without straddling the thin-film coil. Besides, the front shield part has a shield front end face disposed in the medium-opposing surface and a shield upper end face formed distanced from the medium-opposing surface. Further, the front shield part has a shield connecting part. The shield front end face is connected to the shield upper end face by the shield connecting part.
Abstract:
A thin-film magnetic head is constructed such that a main magnetic pole layer, a write shield layer, a gap layer, a thin-film coil and a shield magnetic layer are laminated on a substrate. The thin-film magnetic head has a shield magnetic layer. This thin-film magnetic head has a hard guard frame layer surrounding an equidistant coil part, disposed at a position equidistant from the substrate, from outside and being in direct contact with almost a whole outside surface defining an outer shape of the equidistant coil part.
Abstract:
A magnetic head includes: a main pole; a coil; a first shield having an end face that is located in a medium facing surface at a position forward of an end face of the main pole along a direction of travel of a recording medium; and a first return path section disposed forward of the main pole along the direction of travel of the recording medium. The first return path section connects part of the main pole away from the medium facing surface to the first shield so that a first space is defined. The coil includes a first portion having a planar spiral shape and wound around a core part of the first return path section. The first portion includes first and second coil elements that each extend through the first space. No part of the coil other than the first and second coil elements exists in the first space.