Abstract:
A non-volatile memory device includes gate structures, an insulation layer pattern, and an isolation structure. Multiple gate structures being spaced apart from each other in a first direction are formed on a substrate. Ones of the gate structures extend in a second direction that is substantially perpendicular to the first direction. The substrate includes active regions and field regions alternately and repeatedly formed in the second direction. The insulation layer pattern is formed between the gate structures and has a second air gap therein. Each of the isolation structures extending in the first direction and having a first air gap between the gate structures, the insulation layer pattern, and the isolation structure is formed on the substrate in each field region.
Abstract:
The width of a heavily-doped sinker is substantially reduced by forming the heavily-doped sinker to lie in between a number of closely-spaced trench isolation structures, which have been formed in a semiconductor material. During drive-in, the closely-spaced trench isolation structures significantly limit the lateral diffusion.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
Abstract:
A method for separating a layer for transfer includes forming a crack guiding layer on a substrate and forming a device layer on the crack-guiding layer. The crack guiding layer is weakened by exposing the crack-guiding layer to a gas which reduces adherence at interfaces adjacent to the crack guiding layer. A stress inducing layer is formed on the device layer to assist in initiating a crack through the crack guiding layer and/or the interfaces. The device layer is removed from the substrate by propagating the crack.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
Abstract:
In one embodiment, fabricating conductive lines in an integrated circuit includes providing a layer of conductive metal in a multi-layer structure fabricated upon a wafer and sputter etching the conductive metal using methanol plasma, wherein a portion of the conductive metal that remains after the sputter etching forms the conductive lines. In another embodiment, fabricating conductive lines in an integrated circuit includes providing a layer of conductive metal in a multi-layer structure fabricated upon a wafer, wherein the layer of conductive metal is an intermediate layer in the multi-layer structure, etching the multi-layer structure to expose the conductive metal, sputter etching conductive metal using methanol plasma, wherein a portion of the conductive metal that remains after the sputter etching forms the conductive lines, forming a liner that surrounds the conductive lines, subsequent to the sputter etching, and depositing a dielectric layer on the multi-layer structure.
Abstract:
A method for treating a compound semiconductor substrate, in which method in vacuum conditions a surface of an In-containing III-As, III-Sb or III-P substrate is cleaned from amorphous native oxides and after that the cleaned substrate is heated to a temperature of about 250-550° C. and oxidized by introducing oxygen gas onto the surface of the substrate. The invention relates also to a compound semiconductor substrate, and the use of the substrate in a structure of a transistor such as MOSFET.
Abstract:
A method for manufacturing a semiconductor device includes forming a first-conductivity-type well and a second-conductivity-type well in a silicon substrate; stacking a first high-dielectric-constant insulating film and a first cap dielectric film above the silicon substrate; removing at least the first cap dielectric film from above the second-conductivity-type well; conducting a first annealing at a first temperature to cause an element included in the first cap dielectric film to diffuse into the first high-dielectric-constant insulating film disposed above the first-conductivity-type well; after the first annealing, stacking a second high-dielectric-constant insulating film and a second cap dielectric film above the silicon substrate; removing the second cap dielectric film disposed above the first-conductivity-type well; and conducting a second annealing at a second temperature lower than the first temperature to cause an element included in the second cap dielectric film to diffuse into the second high-dielectric-constant insulating film disposed above the second-conductivity-type well.
Abstract:
There is provided a method for applying a lower viscosity coating liquid onto a semiconductor wafer substrate so as to prevent adhesion loss and to maintain low defect level characteristics. This is achieved by priming the substrate with a bonding agent at a temperature in the range of 18° C. to 50° C. for a short amount of time. This is performed prior to the application of a liquid solvent. As a result, there is overcome the problems of poor adhesion to the substrates and high defect levels in the coated UTR films.