MULTI-DIE PANEL-LEVEL HIGH PERFORMANCE COMPUTING COMPONENTS

    公开(公告)号:US20240030065A1

    公开(公告)日:2024-01-25

    申请号:US17871443

    申请日:2022-07-22

    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g., greater than 300 mm) than components fabricated using wafer-level manufacturing techniques.

    MULTI-DIE PANEL-LEVEL HIGH PERFORMANCE COMPUTING COMPONENTS

    公开(公告)号:US20240030204A1

    公开(公告)日:2024-01-25

    申请号:US17871413

    申请日:2022-07-22

    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g., greater than 300 mm) than components fabricated using wafer-level manufacturing techniques.

Patent Agency Ranking