Abstract:
An exemplary method of making an FPC includes forming a substrate comprising metal foil layers interleaved with intervening layers by: (a) laminating intervening layers with metal foil layers; (b) adhering a covering film to outermost surfaces of the substrate; (c) defining a hole in one side of the substrate through the covering film and at least two metal foil layers and the intervening layer between the at least two metal foil layers by etching or laser technology; and (d) plating a portion of an inner wall of the hole with conductive material to form a via to electrically connect the at least two metal foil layers.
Abstract:
A semiconductor device module includes a first substrate layer on which a first semiconductor device is surface-mounted, a second substrate layer that is a layer laminated on a side of the first substrate layer on which the first semiconductor device is not surface-mounted, a second semiconductor device being surface-mounted on a surface of the second substrate layer and not on a side of the first substrate layer, and a hollow section that is a space sandwiched between the first substrate layer and the second substrate layer and formed on back sides of areas on which the first semiconductor device and the second semiconductor device are surface-mounted.
Abstract:
A connection member can be produced without a via-forming step. The connection member includes an insulating substrate which has an upper surface, a lower surface opposed to the upper surface, and a side surface which connects these surfaces; and at least one wiring which extends from the upper surface to the lower surface through the side surface.
Abstract:
The present invention relates to a power supply circuit comprising at least one transformer which is connected to a primary side circuit and to a secondary side circuit. The present invention further relates to a method for producing such a power supply circuit. To provide an improved power supply circuit which has a reduced size and increased power density and offers more flexibility in the formation of the safety distances between primary side and secondary side, the primary side circuit and the secondary side circuit are each mounted on at least one separate circuit carrier, said circuit carriers being mechanically and electrically coupled to one another and arranged in at least two different planes. According to advantageous embodiments, said circuit carriers may be arranged in planes that are either parallel with or transverse to one another.
Abstract:
Card type information device includes wiring board having a wiring pattern with an electronic component mounted on a first face of wiring board and an antenna connecting electrode, antenna board having antenna pattern with antenna terminal electrodes formed on a first face of antenna board, magnetic material placed between wiring board and antenna board confronting each other, flexible wiring board for coupling the antenna connecting electrode to antenna terminal electrode, and housing for accommodating wiring board, antenna board, magnetic material, and flexible wiring board. Wiring board and antenna board are made from one and the same insulating motherboard.
Abstract:
A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. The conductive patterns include a series of electrical contacts adjacent to one edge of the substrate. The substrate is bonded to two rigid frames, one on each opposite surface. Each substrate has a series of castellations on one edge that are aligned and electrically connected to the respective contacts on the substrate, preferably by soldering. The castellations can serve as a self-aligning mechanism when the module is brought into contact with a low-profile pin array, and the module may be held in place on a motherboard by guide rails in a socket that engages the edges perpendicular to the castellated edge of the module. The module may further be provided with protective heat spreading covers.
Abstract:
The invention relates to a circuit board unit and a method for production thereof. The circuit board unit comprises a circuit board topmost laminate with conductive tracks on the upper side for mounting surface-mountable devices. The circuit board topmost laminate features a thickness dimensioned such that the anticipated heat dissipated by the surface-mountable devices is transported from the upper side to the underside of the circuit board laminate to good effect. The circuit board unit further comprises an electrically insulating laminate arranged under the circuit board topmost laminate, inserts made of a material with good heat conductivity and electrical insulation embedded in the electrically insulating laminate at sites below surface-mountable devices with high heat dissipation, and a cooling plate arranged below the electrically insulating laminate and the inserts.
Abstract:
A module includes a board having a through-hole provided therein, an auxiliary board provided on a lower surface of the board, a first electronic component mounted on an upper surface of the board, a conductive cover covering the first electronic component, and a second electronic component mounted on an upper surface of the auxiliary board. The auxiliary board includes a sealing portion sealing the through-hole. The second electronic component is positioned in the through-hole provided in the board and on the upper surface of the auxiliary board. The second electronic component is taller than the first electronic component. This module is thin.
Abstract:
Circuit board (1) and method of producing thereof, the circuit board having a cavity for microstrip to waveguide transition means (2) defined by a hollow space on the walls of which a protection layer (21) is provided. A microelectronic substrate (33) is placed upon an adhesive film (31) adhered onto a surface of the circuit board (1), the adhesive film being pre-cut in selected areas (32) thereof providing openings therethrough. A metal layer (5) is disposed on the resulting structure, wherein a selected part (51) of the metal layer (5) present on a surface of microelectronics substrate 33, facing the hollow space defined by the cavity for microstrip to waveguide transition means (2) is removed.
Abstract:
A hybrid circuit structure includes an electrical circuit and a heating circuit therefor, both mounted on a single substrate. Valuable substrate space is saved by mounting the electrical circuit components on one surface of the substrate and the heating circuit elements on the opposite surface. A temperature control circuit is included, preferably mounted on the same surface as the electrical circuit components. Precision resistors for gain control and other functions may be provided on a separate substrate which may be mounted directly to the single substrate or to a separator therebetween. The precision resistors are in thermal contact with the temperature controlled heating circuit, thereby further increasing the stability of the circuit.