摘要:
The present invention provides a method and apparatus for plating a conductive material to a substrate and also modifying the physical properties of a conductive film while the substrate is being plated. The present invention further provides a method and apparatus that plates a conductive material on a workpiece surface in a nullproximitynull plating manner while a pad type material or other fixed feature is making contact with the workpiece surface in a nullcold workednull manner. In this manner, energy stored in the cold worked regions of the plated layer is used to accelerate and enhance micro-structural recovery and growth. Thus, large grain size is obtained in the plated material at a lower annealing temperature and a shorter annealing time.
摘要:
Systems and methods to remove or lessen the size of metal particles that have formed on, and to limit the rate at which metal particles form or grow on, workpiece surface influencing devices used during electrodeposition are presented. According to an exemplary method, the workpiece surface influencing device is occasionally placed in contact with a conditioning substrate coated with an inert material, and the bias applied to the electrodeposition system is reversed. According to another exemplary method, the workpiece surface influencing device is conditioned using mechanical contact members, such as brushes, and conditioning of the workpiece surface influencing device occurs, for example, through physical brushing of the workpiece surface influencing device with the brushes. According to a further exemplary method, the workpiece surface influencing device is rotated in different direction during electrodeposition.
摘要:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed by bonding a free end of a wire to a substrate, configuring the wire into a wire stem having a springable shape, severing the wire stem, and overcoating the wire stem with at least one layer of a material chosen primarily for its structural (resiliency, compliance) characteristics. A variety of techniques for configuring, severing, and overcoating the wire stem are disclosed. In an exemplary embodiment, a free end of a wire stem is bonded to a contact area on a substrate, the wire stem is configured to have a springable shape, the wire stem is severed to be free-standing by an electrical discharge, and the free-standing wire stem is overcoated by plating. A variety of materials for the wire stem (which serves as a falsework) and for the overcoat (which serves as a superstructure over the falsework) are disclosed. Various techniques are described for mounting the contact structures to a variety of electronic components (e.g., semiconductor wafers and dies, semiconductor packages, interposers, interconnect substrates, etc.), and various process sequences are described. The resilient contact structures described herein are ideal for making a nulltemporarynull (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing. The self-same resilient contact structures can be used for subsequent permanent mounting of the electronic component, such as by soldering to a printed circuit board (PCB). An irregular topography can be created on or imparted to the tip of the contact structure to enhance its ability to interconnect resiliently with another electronic component. Among the numerous advantages of the present invention is the great facility with which the tips of a plurality of contact structures can be made to be coplanar with one another. Other techniques and embodiments, such as wherein the falsework wirestem protrudes beyond an end of the superstructure, or is melted down, and wherein multiple free-standing resilient contact structures can be fabricated from loops, are described.
摘要:
The present invention deposits a conductive material from an electrolyte solution to a predetermined area of a wafer and thereafter electropolishes the wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer, when the wafer is disposed between a cathode and an anode, and preventing accumulation of the conductive material to areas other than the predetermined area by mechanically polishing the other areas while conductive material is being applied. Thereafter, electropolishing of the previously applied conductive material takes place by applying a second potential difference having a polarity opposite the first potential difference that was used when applying the conductive material. While applying the second potential difference, polishing of the conductive layer with the previously accumulated conductive material disposed thereover is performed.
摘要:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
摘要:
Deposition of metal in a preferred shape, including coatings on parts, or stand-alone materials, and subsequent heat treatment to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25.degree. C. This technique involves depositing a material in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment. This moderate heat treatment differs from other commonly employed "stress relief" heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. Coating a shape and heat treating provides a shaped deposit with improved material properties. Coating a shape with a portion connected to a base and a portion detached therefrom can provide a resilient, conductive contact useful for electronic applications.
摘要:
An apparatus for use in at least one of a plating and a pretreatment for plating, comprising:(A) a vibrationally stirring apparatus for a treatment bath, the vibrationally stirring apparatus (A) being provided with vibration generating means having an vibration motor, and vibrationally stirring means for vibrating a vibration vane at an amplitude of 0.5 to 3.0 mm and at a vibrational frequency of 200 to 800 times per minute, the vibration vane being fixed in one stage or in multistage to a vibrating bar which vibrates in the treatment bath interlockingly with the vibration generating means;(B) an aeration apparatus for the treatment bath;(C) an apparatus for swinging an electrode bar for suspending the plating target thereon; and(D) an apparatus for applying vibration to the electrode bar.
摘要:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
摘要:
A wet process apparatus, e.g., plating cell for plating a flat substrate introduces a flow of electrolyte or other plating solution across the surface of the substrate to be plated. The substrate is mounted on a holder that is positioned on a door that swings between a horizontal open position and a vertical closed position. There is a circular opening in a front wall against which the door seats. The door can have a sealing ring that contacts the wall of the cell outside of the opening. A cathode ring disposed in a recess in the periphery of the opening makes electrical contact with the substrate. The cathode ring can include a thin metal thieving ring. A fluid-powered rotary blade or wiper within the plating chamber rotates to draw bubbles or other impurities from the substrate, and a megasonic transducer applies megasonic acoustic energy to the solution, e.g., at 0.2 to 5 Mhz. The cell can be used for electroless or galvanic plating.
摘要:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.